Derivada pela Definição
Calcule as derivadas das funções fazendo uso da definição da derivada:
\[
f´(x)=\lim_{\Delta x\rightarrow 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}
\]
a)
\( \displaystyle y=x^{3} \)
b)
\( \displaystyle y=\frac{1}{x} \)
c)
\( \displaystyle y=\sqrt{x\;} \)
d)
\( \displaystyle y=\frac{1}{\sqrt{x\;}} \)
e)
\( \displaystyle y=\operatorname{sen}^{2}x \)
f)
\( \displaystyle y=2x^{2}-x \)
Derivadas
Calcule a derivada das funções seguintes.
a)
\( \displaystyle y=x^{4}+3x^{2}-6 \)
b)
\( \displaystyle y=6x^{3}-x^{2} \)
c)
\( \displaystyle y=\frac{x^{5}}{a+b}-\frac{x^{2}}{a-b}-x \)
d)
\( \displaystyle y=\frac{x^{3}+x^{2}+1}{5} \)
e)
\( \displaystyle y=2ax^{3}-\frac{x^{2}}{b}+c \)
f)
\( \displaystyle y=6x^{\frac{7}{2}}+4x^{\frac{5}{2}}+2x \)
g)
\( \displaystyle y=\sqrt{3x\;}+\sqrt[{3}]{x\;}+\frac{1}{x} \)
h)
\( \displaystyle y=\frac{(x+1)^{3}}{x^{\frac{3}{2}}} \)
i)
\( \displaystyle y=\frac{x}{m}+\frac{m}{x}+\frac{x^{2}}{n^{2}}+\frac{n^{2}}{x^{2}} \)
j)
\( \displaystyle y=\sqrt[{3}]{x^{2}}-2\sqrt{x}+5 \)
\( \mathsf{k)}\;\; \displaystyle y=\frac{ax^{2}}{\sqrt[{3}]{x\;}}+\frac{b}{x\sqrt{x\;}}-\frac{\sqrt[{3}]{x\;}}{\sqrt{x\;}} \)
\[ \mathsf{k)}\;\; \displaystyle y=\frac{ax^{2}}{\sqrt[{3}]{x\;}}+\frac{b}{x\sqrt{x\;}}-\frac{\sqrt[{3}]{x\;}}{\sqrt{x\;}} \]
l)
\( \displaystyle y=\left(1+4x^{3}\right)\left(1+2x^{2}\right) \)
m)
\( \displaystyle y=x(2x-1)(3x+2) \)
n)
\( \displaystyle y=\left(2x-1\right)\left(x^{2}-6x+3\right) \)
o)
\( \displaystyle y=\frac{2x^{4}}{b^{2}-x^{2}} \)
p)
\( \displaystyle y=\frac{a-x}{a+x} \)