Exercício Resolvido de Derivadas de Funções
f)
\( \displaystyle y=2x^{2}-x \)
\[ \bbox[#99CCFF,10px]
{f´(x)=\lim_{\Delta x\rightarrow 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}}
\]
Temos
\( f(x+\Delta x)=2(x+\Delta x)^{2}-(x+\Delta x) \)
e
\( f(x)=2x^{2}-x \)
\[
\begin{align}
y' &=\lim_{\Delta x\rightarrow 0}{\frac{2(x+\Delta x)^{2}-(x+\Delta x)-(2x^{2}-x)}{\Delta x}}=\\
& =\lim_{\Delta x\rightarrow 0}{\frac{2(x^{2}+2x\Delta x+\Delta x^{2})-x-\Delta x-2x^{2}+x}{\Delta x}}=\\
& =\lim_{\Delta x\rightarrow 0}{\frac{2x^{2}+4x\Delta x+2\Delta x^{2}-x-\Delta x-2x^{2}+x}{\Delta x}}=\\
& =\lim_{\Delta x\rightarrow 0}{\frac{4x\Delta x+2\Delta x^{2}-\Delta x}{\Delta x}}=\\
& =\lim_{\Delta x\rightarrow 0}{\frac{\Delta x(4x+2\Delta x-1)}{\Delta x}}=\\
& =\lim_{\Delta x\rightarrow 0}{4x+2.0x-1}=4x-1
\end{align}
\]
\[ \bbox[#FFCCCC,10px]
{y'=4x-1}
\]