Exercício Resolvido de Derivadas de Funções
k)
\( \displaystyle y=\frac{ax^{2}}{\sqrt[{3}]{x\;}}+\frac{b}{x\sqrt{x\;}}-\frac{\sqrt[{3}]{x\;}}{\sqrt{x\;}} \)
Sendo
a e
b constantes, escrevendo
\[
\begin{gather}
y=ax^{2}x^{-{\frac{1}{3}}}+bx^{-1}x^{-{\frac{1}{2}}}-x^{\frac{1}{3}}x^{-{\frac{1}{2}}}\\
y=ax^{\frac{6-1}{3}}+bx^{\frac{-2-1}{2}}-x^{\frac{2-3}{6}}\\
y=ax^{\frac{5}{3}}+bx^{-{\frac{3}{2}}}-x^{-{\frac{1}{6}}}
\end{gather}
\]
Usando a regra de derivação de potência
\[ \bbox[#99CCFF,10px]
{y=x^{n}\quad , \quad y'=nx^{n-1}}
\]
\[
\begin{gather}
y'=\frac{5}{3}ax^{\frac{5}{3}-1}+\left(-{\frac{3}{2}}\right)bx^{-{\frac{3} {2}}-1}-\left(-{\frac{1}{6}}\right)x^{-{\frac{1}{6}}-1}\\[5pt]
y'=\frac{5}{3}ax^{\frac{5-3}{3}}-\frac{3}{2}bx^{\frac{-{3-2}}{2}}+\frac{1}{6}x^{\frac{-{1-6}}{6}}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{y'=\frac{5}{3}ax^{\frac{2}{3}}-\frac{3}{2}bx^{-{\frac{5}{2}}}+\frac{1}{6}x^{-{\frac{7}{6}}}}
\]