Exercício Resolvido de Derivadas de Funções
c)
\( \displaystyle y=\sqrt{x\;} \)
\[ \bbox[#99CCFF,10px]
{f´(x)=\lim_{\Delta x\rightarrow 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}}
\]
Temos
\( f(x+\Delta x)=\sqrt{x+\Delta x\;} \)
e
\( f(x)=\sqrt{x\;} \)
\[
y'=\lim_{\Delta x\rightarrow 0}{\frac{\sqrt{x+\Delta x\;}-\sqrt{x\;}}{\Delta x}}
\]
multiplicando o numerador e o denominador por
\( \sqrt{x+\Delta x\;}+\sqrt{x\;} \)
\[
\begin{align}
y' &=\lim_{\Delta x\rightarrow 0}{\frac{\sqrt{x+\Delta x\;}-\sqrt{x\;}}{\Delta x}}.\frac{\sqrt{x+\Delta x\;}+\sqrt{x\;}}{\sqrt{x+\Delta x\;}+\sqrt{x\;}}=\\[5pt]
&=\lim_{\Delta x\rightarrow 0}{\frac{\left(\sqrt{x+\Delta x\;}\right)^{2}+\cancel{\sqrt{x+\Delta x\;}.\sqrt{x\;}}-\cancel{\sqrt{x\;}.\sqrt{x+\Delta x\;}}+\left(-\sqrt{x\;}\right).\sqrt{x\;}}{\Delta x\left(\sqrt{x+\Delta x\;}+\sqrt{x\;}\right)}}=\\[5pt]
&=\lim_{\Delta x\rightarrow 0}{\frac{\cancel{x}+\Delta x-\cancel{x}}{\Delta x\left(\sqrt{x+\Delta x\;}+\sqrt{x\;}\right)}}=\lim_{\Delta x\rightarrow 0}{\frac{\cancel{\Delta x}}{\cancel{\Delta x}\left(\sqrt{x+\Delta x\;}+\sqrt{x\;}\right)}}=\\[5pt]
&=\lim_{\Delta x\rightarrow 0}{\frac{1}{\sqrt{x+\Delta x\;}+\sqrt{x\;}}}=\lim_{\Delta x\rightarrow 0}{\frac{1}{\sqrt{x+0\;}+\sqrt{x\;}}}=\\[5pt]
&=\lim_{\Delta x\rightarrow 0}{\frac{1}{\sqrt{x\;}+\sqrt{x\;}}}=\frac{1}{2\sqrt{x\;}}
\end{align}
\]
\[ \bbox[#FFCCCC,10px]
{y'=\frac{1}{2\sqrt{x\;}}}
\]