Cinemática
publicidade   




Obtenha a expressão para o cálculo do espaço percorrido em função do tempo no Movimento Retilíneo Uniforme, a partir da expressão da velocidade instantânea.

Para um móvel, em Movimento Retilíneo Uniformemente Variado, obtenha as expressões para o cálculo da velocidade e do espaço percorrido em função do tempo a partir da expressão da aceleração instantânea.

A velocidade de um corpo é dada por
\[ \begin{gather} v=t^3-4t^2+2t+5 \end{gather} \]
a) Qual é a posição do corpo em t = 3 s, se inicialmente ele está em x = 6 m;
b) Qual é a aceleração do corpo em t = 3 s.

Um corpo se move com aceleração dada por
\[ \begin{gather} a=\alpha-\beta v \end{gather} \]
onde α e β são constantes reais positivas que tornam a expressão dimensionalmente consistente. Determinar as expressões para a velocidade e espaço em função do tempo.

Dois móveis estão em Movimento Retilíneo Uniformemente Variado (M.R.U.V.) sobre a mesma trajetória, seus movimentos são descritos pelas equações
\[ \begin{gather} \left. \begin{array}{l} x_1=2t-\dfrac{1}{2}t^2\\ x_2=10-3t+\dfrac{3}{2}t^2 \end{array} \right. \qquad\text{(unidades do S.I.)} \end{gather} \]
Determine:
a) O ponto de encontro entre os dois móveis;
b) O instante em que a distância entre os dois móveis é mínima e o valor da menor distância entre eles;
c) Os instantes em que as velocidades dos móveis mudam de sentido e as posições em que isto ocorre.

Um corpo se move com aceleração dada por
\[ \begin{gather} a=\alpha x \end{gather} \]
onde α é uma constante real positiva que torna a expressão dimensionalmente consistente. A velocidade inicial do corpo é igual à v0 para uma posição x0. Determinar a expressão para a velocidade em função da posição.

Um barco a vapor, que navega com velocidade constante v km/h, consome 0,3+0,001v3 toneladas de carvão por hora. Calcular:
a) A velocidade que deverá ter num percurso de 1000 km para haver o mínimo consumo;
b) A quantidade de carvão consumida nesta viagem.

Dois pontos materiais percorrem trajetórias perpendiculares entre si que se cruzam numa origem comum. Os móveis partem simultaneamente do repouso de pontos x0 e y0 situados sobre as trajetórias em direção à origem em Movimento Retilíneo Uniformemente Variado (M.R.U.V.) ambos com a mesma aceleração em módulo igual a a.. Calcular:
a) Depois de quanto tempo da partida a distância entre os móveis é mínima;
b) Qual é a mínima distância.

Um móvel está sobre um plano-xy inicialmente em repouso na posição x0 sobre o eixo-x positivo. Em certo instante passa a se movimentar com velocidades constantes vx, no sentido da origem, e vy no sentido do eixo-y positivo. Determinar depois de quanto tempo este ponto móvel se encontrará a distância mínima da origem e, qual é essa distância mínima.
Solução escalar

Solução por vetores

Solução por diferenciação
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .