Cauchy's Integral Formula
Find the integrals using the
Cauchy's Integral Formula with the paths traversed counterclockwise
a)
\( \displaystyle \oint_{|z|=2}\frac{z}{z-1}\;dz \)
b)
\( \displaystyle \oint_{{|z|=2}}\frac{\operatorname{e}^{\pi\mathrm{i}z}}{z-1}\;dz \)
c)
\( \displaystyle \oint_{{|z|=4}}\frac{z^{2}+1}{z+2}\;dz \)
d)
\( \displaystyle \oint_{{|z|=1/2}}\frac{z^{2}+2z+3}{3z-1}\;dz \)
e)
\( \displaystyle \oint_{{|z-\mathrm{i}|=2}}\frac{\operatorname{sen}z}{z-\frac{\pi}{4}}\;dz \)
f)
\( \displaystyle \oint_{{|z|=1}}\frac{z^{2}}{z-2\mathrm{i}}\;dz \)
g)
\( \displaystyle \oint_{|z|=4}\frac{z^{2}}{z-2\mathrm{i}}\;dz \)
h)
\( \displaystyle \oint_{{|z|=2}}\frac{z}{\left(z^{2}-9\right)(z+\mathrm{i})}\;dz \)
i)
\( \displaystyle \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz \)
Calculate the following integrals on the contours shown in the figures
a) \( \displaystyle \oint_{{C}}\frac{z}{(z+1)(z-2)}\;dz \)
b) \( \displaystyle \oint_{{C}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz \)
c) \( \displaystyle \oint_{{C}}\frac{\cos z}{z}\;dz \)
d) \( \displaystyle \oint_{{C}}\frac{z^{2}}{z-1-\mathrm{i}}\;dz \)
Find the integrals using the
Cauchy's Integral Formula
a)
\( \displaystyle \oint_{|z+\mathrm{i}|=1}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz \)
b)
\( \displaystyle \oint_{|z-1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}} \)
c)
\( \displaystyle \oint_{|z+1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}} \)
d)
\( \displaystyle \oint_{|z|=3}\frac{\cos (z^{2}+3z-1)}{(2z+3)^{2}}\;dz \)
e)
\( \displaystyle \oint_{|z|=1}\frac{z^{2}+z+\mathrm{i}}{(4z-\mathrm{i})^{3}}\;dz \)
f)
\( \displaystyle \oint_{|z-2|=3}\frac{\operatorname{e}^{z}}{z^{3}(z-1)}\;dz \)