The path is given by contour
C (Figure 1). Point
\( z-1-\mathrm{i}\Rightarrow z=1+\mathrm{i} \)
is inside the region determined by
C.
The
Cauchy Integral Formula in the general form is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{III}
\end{gather}
\]
Identifying the terms of the integral
\[
\begin{gather}
\frac{{
\bbox[#FFCC66,2px]
{n}
}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{
\bbox[#FFFF66,2px]
{f(z)}
}{\left(z-
\bbox[#FFD9CC,2px]
{z_{0}}
\right)^{
\bbox[#FFCC66,2px]
{n}
+1}}\;dz=\oint_{C}\frac{
\bbox[#FFFF66,2px]
{z^{2}}}
{\left[z-
\bbox[#FFD9CC,2px]
{(1+\mathrm{i})}
\right]^{
\bbox[#FFCC66,2px]
{0}
+1}}\;dz
\end{gather}
\]