Solved Problem on Cauchy's Integral Formula
advertisement   



i)   \( \displaystyle \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz \)


The path of integration is given by the circle of radius 1, centered at the point (0, 1), traversed counterclockwise (Figure 1).
Writing the denominator of integrand as   \( z^{2}+1=0\Rightarrow x^{2}=-1\Rightarrow z=\pm \mathrm{i} \)
\[ \begin{gather} \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{(z+\mathrm{i})(z-\mathrm{i})}\;dz \end{gather} \]
The general form of Cauchy's Integral Formula given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Figura 1

Identifying the terms of the integral
\[ \begin{gather} \frac{{n}!}{2\pi \mathrm{i}}\;\oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz\oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{(z+\mathrm{i})(z-\mathrm{i}1)}\;dz\\[5pt] \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi\mathrm{i}}\;\oint_{C}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z-{ \bbox[#FFD9CC,2px] {z_{0}} }\right)^{{ \bbox[#FFCC66,2px] {n} }+1}}\;dz=\oint_{{|z-\mathrm{i}|=1}}{{ \bbox[#FFFF66,2px] {\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{(z+\mathrm{i})}}}} \frac{1}{(z-{ \bbox[#FFD9CC,2px] {\mathrm{i}} })^{{ \bbox[#FFCC66,2px] {0} }+1}}\;dz \end{gather} \]
he point   \( z-\mathrm{i}=0\Rightarrow z=\mathrm{i} \)   that is inside the region determined by de closed contur C, it will be used in calculation of the integral, we have   \( f(z)=\frac{\sin \;\frac{\mathrm{i}z\pi }{2}}{(z+\mathrm{i})} \),   z0 = i and n = 0, writing the expression (I) for the given integral
\[ \begin{gather} \oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=\frac{2\pi\mathrm{i}}{0!}\;f^{(0)}(\mathrm{i})\\[5pt] \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=2\pi\mathrm{i}\;\frac{\sin \;\frac{\mathrm{i}(\mathrm{i})\pi}{2}}{(\mathrm{i}+\mathrm{i})}\\[5pt] \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=2\pi\mathrm{i}\;\frac{\sin \frac{\mathrm{i}^{2}\pi}{2}}{2\mathrm{i}}\\[5pt] \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=\pi\;\sin \left(-{\frac{\pi }{2}}\right)\\[5pt] \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=-\pi\;\sin \frac{\pi }{2}\\[5pt] \oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=-\pi \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{{|z-\mathrm{i}|=1}}\frac{\sin \;\frac{\mathrm{i}z\pi}{2}}{z^{2}+1}\;dz=-\pi} \end{gather} \]

Note 1: The path traversed   \( |\;z-\mathrm{i}\;|=1 \)   is a circle. For a complex number   \( z=x+\mathrm{i}y \),   the absolute value is given by   \( \sqrt{x^{2}+(y-1)^{2}\;}=1 \),   squaring both sides of equation   \( \left(\sqrt{x^{2}+(y-1)^{2}\;}\right)^{2}=1^{2} \),   we obtain the equation of a circle   \( (x-0)^{2}+(y-1)^{2}=1^{2}, \)
\[ (x-0)^{2}+(y-1)^{2}=1^{2} \]
  with a radius equal to 1 and center at the point (0, 1).

Note 2: f(0) represents the calculation of the function at the point z0 without derivative.
advertisement