The path of integration is given by the circle of radius 2, centered at the origin (0, 0), traversed
counterclockwise (Figure 1).
The general form of
Cauchy's Integral Formula given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I}
\end{gather}
\]
Identifying the terms of the integral
\[
\begin{gather}
\frac{{
\bbox[#FFCC66,2px]
{n}
}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{
\bbox[#FFFF66,2px]
{f(z)}
}{\left(z-
\bbox[#FFD9CC,2px]
{z_{0}}
\right)^{
\bbox[#FFCC66,2px]
{n}
+1}}\;dz=\oint_{|z|=2}\frac{
\bbox[#FFFF66,2px]
{\operatorname{e}^{\pi\mathrm{i}z}}
}{\left(z-
\bbox[#FFD9CC,2px]
{1}
\right)^{
\bbox[#FFCC66,2px]
{0}
+1}}\;dz
\end{gather}
\]
the point
\( z-1=0\Rightarrow z=1 \)
that is inside the region determined by de closed contur
C, it will be used in calculation
of the integral, we have
\( f(z)=\operatorname{e}^{\pi \mathrm{i}z} \),
z0 = 1 and
n = 0, writing the expression (I) for the given integral