Solved Problem on Cauchy's Integral Formula
advertisement   



b)   \( \displaystyle \oint_{{C}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz \)



The path is given by contour C (Figure 1). We can divide contour C into two parts, a contour C1 traversed clockwise on the right side, the integration will be negative. And a contour C2 traversed counterclockwise on the left side, the integration will be positive. Only the point z = 0 is inside the region determined by contour C1, and only the point   \( z-3=0\Rightarrow z=3 \)   is inside the region determined by contour C2.
Figure 1
The integral is rewritten as
\[ \begin{gather} \oint_{{C}}\frac{z}{(z+1)(z-2)}\;dz=\underbrace{-{\oint_{{C_{1}}}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz}_{I_{1}}+\underbrace{\oint_{{C_{2}}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz}_{I_{2}} \end{gather} \]
The integral will be given by the sum of the integrals I1 and I2.
The Cauchy Integral Formula in the general form is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identifying the terms of the integrals.
  • Integral I1:
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=-\oint_{C} \bbox[#FFFF66,2px] {\frac{\operatorname{e}^{z}}{(z-3)}} \frac{1}{\left[z- \bbox[#FFD9CC,2px] {0} \right]^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
we have \( f(z)=\frac{\operatorname{e}^{z}}{(z-3)} \), z0 = 0 and n = 0, writing the expression (I) for the integral
\[ \begin{gather} I_{1}=\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] I_{1}=-{\oint_{{C_{1}}}}\frac{\operatorname{e}^{z}}{z(z-3)}=\frac{2\pi\mathrm{i}}{0!}\;f^{(0)}(0)\\[5pt] I_{1}=2\pi\mathrm{i}\;\times\left[\frac{\operatorname{e}^{0}}{0-3}\right]\\[5pt] I_{1}=-{\frac{2\pi\mathrm{i}}{3}} \tag{II} \end{gather} \]
  • Integral I2:
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=-\oint_{C} \bbox[#FFFF66,2px] {\frac{\operatorname{e}^{z}}{z}} \frac{1}{\left[z- \bbox[#FFD9CC,2px] {3} \right]^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
we have \( f(z)=\frac{\operatorname{e}^{z}}{z} \), z0 = 3 and n = 0, writing the expression (I) for the integral
\[ \begin{gather} I_{2}=\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] I_{2}=\oint_{{C_{2}}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz=\frac{2\pi\mathrm{i}}{0!}\;f^{(0)}(3)\\[5pt] I_{2}=2\pi\mathrm{i}\;\times\left(\frac{\operatorname{e}^{3}}{3}\right)\\[5pt] I_{2}=\frac{2\operatorname{e}^{3}\pi\mathrm{i}}{3} \tag{III} \end{gather} \]
The result of the integral will be given by the difference in the values of (II) and (III)
\[ \begin{gather} \oint_{{C}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz=I_{1}-I_{2}\\[5pt] \oint_{{C}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz=-{\frac{2\pi\mathrm{i}}{3}}-\frac{2\operatorname{e}^{3}\pi \mathrm{i}}{3} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{{C}}\frac{\operatorname{e}^{z}}{z(z-3)}\;dz=-\frac{2\pi\mathrm{i}}{3}\left(\operatorname{e}^{3}+1\right)} \end{gather} \]

Note 1: We do not need to know the equation that describes the contour C for the calculation, it is enough to know if the singularity points are inside or outside the region determined by the contour.
Note 2: f(0) represents the calculation of the function at the point z0 without derivative.
advertisement