Solved Problem on Cauchy's Integral Formula
advertisement   



d)   \( \displaystyle \oint_{{|z|=1/2}}\frac{z^{2}+2z+3}{3z-1}\;dz \)

The path of integration is given by the circle of radius \( \frac{1}{2} \), centered at the origin (0, 0), traversed counterclockwise (Figure 1).
The general form of Cauchy's Integral Formula given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identifying the terms of the integral
\[ \begin{gather} \frac{{{n}}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{{f(z)}}{\left(z-{z_{0}}\right)^{{n}+1}}\;dz=\oint_{{|z|=1/2}}\frac{z^{2}+2z+3}{3z-1}\;dz \end{gather} \]
Figure 1
factoring 3 in the denominator
\[ \begin{gather} \frac{n!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{{f(z)}}{\left(z-z_{0}\right)^{n+1}}\;dz=\oint_{{|z|=1/2}}\frac{{z^{2}+2z+3}}{3\left(z-{\frac{1}{3}}\right)^{0+1}}\;dz\\[5pt] \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{|z|=1/2} \bbox[#FFFF66,2px] {\frac{{z^{2}+2z+3}}{3}} \frac{1}{\left(z-{ \bbox[#FFD9CC,2px] {\frac{1}{3}} }\right)^{ \bbox[#FFCC66,2px] {0} +1}} \end{gather} \]
the point   \( z-\frac{1}{3}=0\Rightarrow z=\frac{1}{3} \)   that is inside the region determined by de closed contur C, it will be used in calculation of the integral, we have   \( f(z)=\frac{z^{2}+2z+3}{3} \), \( z_{0}=\frac{1}{3} \) and n = 0, writing the expression (I) for the given integral
\[ \begin{gather} \oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{{|z|=1/2}}\frac{z^{2}+2z+3}{3z-1}\;dz=\frac{2\pi\mathrm{i}}{0!}\;f^{(0)}\left(\frac{1}{3}\right)\\[5pt] \oint_{{|z|=1/2}}\frac{{z^{2}+2z+3}}{3\left(z-{\frac{1}{3}}\right)}\;dz=\frac{2\pi\mathrm{i}}{0!}\;f^{(0)}\left(\frac{1}{3}\right)\\[5pt] \oint_{{|z|=1/2}}\frac{{z^{2}+2z+3}}{3\left(z-{\frac{1}{3}}\right)}\;dz=2\pi\mathrm{i}\;\frac{\left[\left(\frac{1}{3}\right)^{2}+2\times \frac{1}{3}+3\right]}{3}\\[5pt] \oint_{{|z|=1/2}}\frac{{z^{2}+2z+3}}{3\left(z-{\frac{1}{3}}\right)}\;dz=2\pi\mathrm{i}\;\times\frac{1}{3}\times\left[\frac{1}{9}+\frac{2}{3}+3\right]\\[5pt] \oint_{{|z|=1/2}}\frac{{z^{2}+2z+3}}{3\left(z-{\frac{1}{3}}\right)}\;dz=2\pi\mathrm{i}\;\times\frac{1}{3}\times\left[\frac{1+6+27}{9}\right]\\[5pt] \oint_{{|z|=1/2}}\frac{{z^{2}+2z+3}}{3\left(z-{\frac{1}{3}}\right)}\;dz=2\times\frac{1}{3}\times\frac{34}{3}\pi\mathrm{i} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{{|z|=1/2}}\frac{z^{2}+2z+3}{3z-1}\;dz=\frac{68}{27}\pi\mathrm{i}} \end{gather} \]

Note 1: The path traversed   \( |\;z\;|=1/2 \)   is a circle. For a complex number   \( z=x+\mathrm{i}y \),   the absolute value is given by   \( \sqrt{x^{2}+y^{2}\;}=1/2 \),   squaring both sides of equation   \( \left(\sqrt{x^{2}+y^{2}\;}\right)^{2}=(1/2)^{2} \),   we obtain the equation of a circle   \( (x-0)^{2}+(y-0)^{2}=(1/2)^{2}, \)
\[ (x-0)^{2}+(y-0)^{2}=(1/2)^{2} \]
  with a radius equal to 1/2 and center at the origin (0, 0).

Note 2: f(0) represents the calculation of the function at the point z0 without derivative.
advertisement