Solved Problem on Cauchy's Integral Formula
advertisement   



e)   \( \displaystyle \oint_{{|z-\mathrm{i}|=2}}\frac{\sin z}{z-\frac{\pi}{4}}\;dz \)

The path of integration is given by the circle of radius 2, centered at point (0, 1), traversed counterclockwise (Figure 1).
The general form of Cauchy's Integral Formula given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identifying the terms of the integral
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{{|z|=2}}\frac{ \bbox[#FFFF66,2px] {\sin z} }{\left(z- \bbox[#FFD9CC,2px] {\frac{\pi}{4}} \right)^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
the point   \( z-\frac{\pi}{4}=0\Rightarrow z=\frac{\pi}{4} \)   that is inside the region determined by de closed contur C, it will be used in calculation of the integral, we have   \( f(z)=\sin z \), \( z_{0}=\frac{\pi}{4} \) and n = 0, writing the expression (I) for the given integral
Figure 1
\[ \begin{gather} \oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{{|z-\mathrm{i}|=2}}\frac{\sin z}{z-\frac{\pi}{4}}\;dz=\frac{2\pi \mathrm{i}}{0!}\;f^{(0)}\left(\frac{\pi}{4}\right)\\[5pt] \oint_{{|z-\mathrm{i}|=2}}\frac{\sin z}{z-\frac{\pi}{4}}\;dz=2\pi \mathrm{i}\;\sin \frac{\pi }{4}\\[5pt] \oint_{{|z-\mathrm{i}|=2}}\frac{\sin z}{z-\frac{\pi}{4}}\;dz=\cancel{2}\pi \mathrm{i}\;\times \frac{\sqrt{2\;}}{\cancel{2}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{{|z-\text{i}|=2}}\frac{\sin z}{z-\frac{\pi}{4}}\;dz=\sqrt{2\;}\pi \mathrm{i}} \end{gather} \]

Note 1: The path traversed   \( |\;z-\mathrm{i}\;|=2 \)   is a circle. For a complex number   \( z=x+\mathrm{i}y-\mathrm{i}\Rightarrow x+\mathrm{i}(y-1), \)
\[ z=x+\mathrm{i}y-\mathrm{i}\Rightarrow x+\mathrm{i}(y-1) \]
  the absolute value is given by   \( \sqrt{x^{2}+(y-1)^{2}\;}=2, \)
\[ \sqrt{x^{2}+(y-1)^{2}\;}=2 \]
  squaring both sides of equation   \( \left(\sqrt{x^{2}+(y-1)^{2}\;}\right)^{2}=2^{2}, \)
\[ \left(\sqrt{x^{2}+(y-1)^{2}\;}\right)^{2}=2^{2} \]
  we obtain the equation of a circle   \( (x-0)^{2}+(y-1)^{2}=2^{2}, \)
\[ (x-0)^{2}+(y-1)^{2}=2^{2} \]
  with a radius equal to 2 and center at the point (0, 1).

Note 2: f(0) represents the calculation of the function at the point z0 without derivative.
advertisement