The path of integration is given by the circle of radius 2, centered at point (0, 1), traversed
counterclockwise (Figure 1).
The general form of
Cauchy's Integral Formula given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I}
\end{gather}
\]
Identifying the terms of the integral
\[
\begin{gather}
\frac{{
\bbox[#FFCC66,2px]
{n}
}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{
\bbox[#FFFF66,2px]
{f(z)}
}{\left(z-
\bbox[#FFD9CC,2px]
{z_{0}}
\right)^{
\bbox[#FFCC66,2px]
{n}
+1}}\;dz=\oint_{{|z|=2}}\frac{
\bbox[#FFFF66,2px]
{\sin z}
}{\left(z-
\bbox[#FFD9CC,2px]
{\frac{\pi}{4}}
\right)^{
\bbox[#FFCC66,2px]
{0}
+1}}\;dz
\end{gather}
\]
the point
\( z-\frac{\pi}{4}=0\Rightarrow z=\frac{\pi}{4} \)
that is inside the region determined by de closed contur
C, it will be used in calculation
of the integral, we have
\( f(z)=\sin z \),
\( z_{0}=\frac{\pi}{4} \)
and
n = 0, writing the expression (I) for the given integral