Solved Problem on Cauchy's Integral Formula
advertisement   



a)   \( \displaystyle \oint_{|z|=2}\frac{z}{z-1}\;dz \)

The path of integration is given by the circle of radius 2, centered at the origin (0, 0), traversed counterclockwise (Figure 1).
The general form of Cauchy's Integral Formula given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identifying the terms of the integral
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{{|z|=2}}\frac{ \bbox[#FFFF66,2px] {z} }{\left(z- \bbox[#FFD9CC,2px] {1} \right)^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
the point   \( z-1=0\Rightarrow z=1 \)   that is inside the region determined by de closed contur C, it will be used in calculation of the integral, we have   \( f(z)=z \), z0 = 1 and n = 0, writing the expression (I) for the given integral
Figure 1
\[ \begin{gather} \oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{|z|=2}\frac{z}{z-1}\;dz=\frac{2\pi\mathrm{i}}{0!}\;f^{(0)}(1)\\[5pt] \oint_{|z|=2}\frac{z}{z-1}\;dz=2\pi \mathrm{i}\;\times 1 \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint _{|z|=2}\frac{z}{z-1}\;dz=2\pi \mathrm{i}} \end{gather} \]

Note 1: The path traversed   \( |\;z\;|=2 \)   is a circle. For a complex number   \( z=x+\mathrm{i}y \),   the absolute value is given by   \( \sqrt{x^{2}+y^{2}\;}=2 \),   squaring both sides of equation   \( \left(\sqrt{x^{2}+y^{2}\;}\right)^{2}=2^{2} \),   we obtain the equation of a circle   \( (x-0)^{2}+(y-0)^{2}=2^{2}, \)
\[ (x-0)^{2}+(y-0)^{2}=2^{2} \]
  with a radius equal to 2 and center at the origin (0, 0).

Note 2: f(0) represents the calculation of the function at the point z0 without derivative.
advertisement