Solved Problem on Cauchy's Integral Formula
advertisement   



c)   \( \displaystyle \oint_{|z+1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}} \)


The path of integration is given by the circle of radius 1, centered at the point (−1, 0), traversed counterclockwise (Figure 1).
The general form of Cauchy's Integral Formula is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identifying the terms of the integral
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{{|z+1|=1}} \bbox[#FFFF66,2px] {{\frac{1}{(z-1)^{3}}}} \frac{1}{(z+ \bbox[#FFD9CC,2px] {1} )^{ \bbox[#FFCC66,2px] {2} +1}}\;dz \end{gather} \]
Figure 1

the point   \( z+1=0\Rightarrow z=-1 \),   lies inside the region determined by de closed contour C, will be used in the calculation of the integral we have   \( f(z)=\frac{1}{(z-1)^{3}} \),   z0 = −1 and n = 2, writing the expression (I)
\[ \begin{gather} \oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{|z+1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}}=\frac{2\pi\mathrm{i}}{2!}\;f^{(2)}(-1) \end{gather} \]

Calculation of the second derivative of    \( \displaystyle f(z)=\frac{1}{(z-1)^{3}} \)

Rewriting the function f(z) as   \( f(z)=(z-1)^{-3} \)
the function f(z) is a composite function using the Chain Rule
\[ \begin{gather} \frac{du[v(z)]}{dz}=\frac{du}{dv}\frac{dv}{dz} \end{gather} \]
where   \( u(v)=v^{-3} \)   and   \( v(z)=(z-1) \)
\[ \begin{gather} \frac{df}{dz}=\frac{d\left(v^{-3}\right)}{dv}\frac{d(z-1)}{dz}\\[5pt] \frac{df}{dz}=-3v^{-3-1}(-1)\\[5pt] \frac{df}{dz}=-3(z-1)^{-4} \end{gather} \]
second differentiation and applying the Chain Rule, where   \( u(v)=-3v^{-4} \)   and   \( v(z)=(z-1) \)
\[ \begin{gather} \frac{d^{2}f}{dz^{2}}=\frac{d\left(3v^{-4}\right)}{dv}\frac{d(z-1)}{dz}\\[5pt] \frac{d^{2}f}{dz^{2}}=-12v^{-4-1}(-1)\\[5pt] \frac{d^{2}f}{dz^{2}}=12(z-1)^{-5} \end{gather} \]
\[ \begin{gather} f^{(2)}(z)=\frac{12}{(z-1)^{5}} \end{gather} \]

\[ \begin{gather} \oint_{{|z+1|=1}}\frac{dz}{(z-1)^{3}(z+1)^{3}}=\frac{\cancel{2}\pi\mathrm{i}}{\cancel{2}\times 1}\;\frac{12}{(-1-1)^{5}}\\[5pt] \oint_{|z+1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}}=\pi\mathrm{i}\;\frac{12}{(-2)^{5}}\\[5pt] \oint_{|z+1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}}=-\pi\mathrm{i}\;\frac{\cancelto{3}{12}}{\cancelto{8}{32}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{|z+1|=1}\frac{dz}{(z-1)^{3}(z+1)^{3}}=-\;\frac{3\pi\mathrm{i}}{8}} \end{gather} \]
advertisement