Solved Problem on Cauchy's Integral Formula
advertisement   



c)   \( \displaystyle \oint_{{C}}\frac{\cos z}{z}\;dz \)



The path is given by contour C (Figure 1). We can divide contour C into two parts, an external contour C1, traversed counterclockwise, the integration will be positive. And an internal contour C2 traversed counterclockwise, the integration will be positive. The point z = 0 is inside the region determined by the two contours C1 and C2.
The integral is rewritten as
\[ \begin{gather} \oint_{{C}}\frac{z}{(z+1)(z-2)}\;dz=\underbrace{\oint_{{C_{1}}}\frac{\cos z}{z}\;dz}_{I_{1}}+\underbrace{\oint_{{C_{2}}}\frac{\cos z}{z}\;dz}_{I_{2}} \end{gather} \]
Figure 1
The integral will be given by the sum of the integrals I1 and I2.
The Cauchy Integral Formula in general form is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
dentifying the terms of the integrals.
  • Integral I1:
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{C}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{C_{1}}\frac{ \bbox[#FFFF66,2px] {\operatorname{cos z}}} {\left(z- \bbox[#FFD9CC,2px] {0} \right)^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
we have \( f(z)=\cos z \), z0 = 0 and n = 0, writing the expression (I) for the integral
\[ \begin{gather} I_{1}=\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] I_{1}=\oint_{C_{1}}\frac{\cos z}{z}\;dz=\frac{2\pi \mathrm{i}}{0!}\;f^{(0)}(0)\\[5pt] I_{1}=2\pi \mathrm{i}\cancelto{1}{\cos0}\;\\[5pt] I_{1}=2\pi \mathrm{i} \tag{II} \end{gather} \]
  • Integral I2:
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{C}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{C_{2}}\frac{ \bbox[#FFFF66,2px] {\operatorname{cos z}}} {\left(z- \bbox[#FFD9CC,2px] {0} \right)^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
we have \( f(z)=\cos z \), z0 = 3 and n = 0, writing the expression (I) for the integral
\[ \begin{gather} I_{1}=\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] I_{1}=\oint_{C_{2}}\frac{\cos z}{z}\;dz=\frac{2\pi \mathrm{i}}{0!}\;f^{(0)}(0)\\[5pt] I_{1}=2\pi \mathrm{i}\cancelto{1}{\cos0}\;\\[5pt] I_{1}=2\pi \mathrm{i} \tag{III} \end{gather} \]
The result of the integral will be given by the sum of the values of (II) and (III)
\[ \begin{gather} \oint_{{C}}\frac{\cos z}{z}\;dz=I_{1}+I_{2}\\[5pt] \oint_{{C}}\frac{\cos z}{z}\;dz=2\pi \mathrm{i}+2\pi \mathrm{i} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{{C}}\frac{\cos z}{z}\;dz=4\pi \mathrm{i}} \end{gather} \]

Note 1: We do not need to know the equation that describes the contour C for the calculation, it is enough to know if the singularity points are inside or outside the region determined by the contour.
Note 2: f(0) represents the calculation of the function at the point z0 without derivative.
advertisement