Solved Problem on Cauchy's Integral Formula
advertisement   



a)   \( \displaystyle \oint_{|z+\mathrm{i}|=1}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz \)


The path of integration is given by the circle of radius 1, centered at the point (0, −1), traversed counterclockwise (Figure 1).
The general form of Cauchy's Integral Formula is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identifying the terms of the integral
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{{|z+\mathrm{i}|=1}}\frac{ \bbox[#FFFF66,2px] {{\sin z}} }{[z-( \bbox[#FFD9CC,2px] {{-\mathrm{i}}} )]^{ \bbox[#FFCC66,2px] {2} +1}}\;dz \end{gather} \]
Figure 1

the point   \( z+\mathrm{i}=0\Rightarrow z=-\mathrm{i} \),   lies inside the region determined by de closed contour C, will be used in the calculation of the integral we have   \( f(z)=\sin z \),   z0 = −i, and n = 2, writing the expression (I)
\[ \begin{gather} \oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{|z+\mathrm{i}|=1}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\frac{2\pi\mathrm{i}}{2!}\;f^{(2)}(-\mathrm{i}) \end{gather} \]

Calculation of the second derivative of    \( \displaystyle f(z)=\sin z \)
\[ \begin{gather} \frac{df}{dz}=\cos z\\[10pt] \frac{d^{2}f}{dz^{2}}=-\sin z \end{gather} \]

\[ \begin{gather} \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\frac{2\pi\mathrm{i}}{2\times 1}\;[-\sin (-\mathrm{i})] \end{gather} \]
as sine is an odd function   \( \sin (-\theta)=-\operatorname{sen}(\theta) \)
\[ \begin{gather} \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\;[-(-\sin \;\mathrm{i})]\\[5pt] \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\;\sin \;\mathrm{i} \end{gather} \]

From the exponential form of the sine    \( \displaystyle \sin z=\frac{\operatorname{e}^{\mathrm{i}z}-\operatorname{e}^{-\mathrm{i}z}}{2\mathrm{i}} \)

\[ \begin{gather} \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\;\left(\frac{\operatorname{e}^{\mathrm{i}.\mathrm{i}}-\operatorname{e}^{-\mathrm{i}.\mathrm{i}}}{2\mathrm{i}}\right)\\[5pt] \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(\frac{\operatorname{e}^{\mathrm{i}^{2}}-\operatorname{e}^{-\mathrm{i}^{2}}}{2}\right)\\[5pt] \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(\frac{\operatorname{e}^{-1}-\operatorname{e}^{-(-1)}}{2}\right)\\[5pt] \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(\frac{\operatorname{e}^{-1}-\operatorname{e}^{1}}{2}\right)\\[5pt] \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(-{\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}}\right)\\[5pt] \oint_{{|z+\mathrm{i}|=1}}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=-\pi\;\left(\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}\right) \end{gather} \]

From the exponential form of the hyperbolic sine    \( \displaystyle \sinh z=\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2} \)

\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{|z+\mathrm{i}|=1}\frac{\sin z}{(z+\mathrm{i})^{3}}\;dz=-\pi\;\sinh 1} \end{gather} \]

Note: We can calculate the numerical value using e = 2.71818 e π = 3.14159
\[ \begin{split} -\pi\;\left(\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}\right) &\Rightarrow-3.14159\times\;\left(\frac{2.71818^{1}-2.71818^{-1}}{2}\right)\Rightarrow\\[5pt] &\Rightarrow-\frac{3.14159}{2}\times\;\left(2.71818-\frac{1}{2.71818}\right)\Rightarrow\\[5pt] &\Rightarrow-1.57079\times\;\left(\frac{2.71818.2.71818-1}{2.71818}\right)\Rightarrow\\[5pt] &\Rightarrow-1.57079\times\;\left(\frac{7.38850-1}{2.71818}\right)\Rightarrow\\[5pt] &\Rightarrow-1.57079\times\;\left(\frac{6.38850}{2.71818}\right)\Rightarrow\\[5pt] &\Rightarrow-1.57079\times\;\left(\frac{6.38850}{2.71818}\right)\Rightarrow\\[5pt] &\Rightarrow-1.57079\times\;\left(1.71817\right)\Rightarrow-2.69888 \end{split} \]
advertisement