Cauchy-Riemann Equations
advertisement   



Use the Cauchy-Riemann Equations to verify the analyticity of the following functions, check where they are differentiable, and find their derivative.

\( \mathsf{a)}\;\; \displaystyle w=\left(x^{2}-y^{2}-2x\right)+2iy\left(x-1\right) \)
\[ \mathsf{a)}\;\; \displaystyle w=\left(x^{2}-y^{2}-2x\right)+2iy\left(x-1\right) \]


\( \mathsf{b)}\;\; \displaystyle w=(\operatorname{e}^{y}+\operatorname{e}^{-y})\sin x+i(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \)
\[ \mathsf{b)}\;\; \displaystyle w=(\operatorname{e}^{y}+\operatorname{e}^{-y})\sin x+i(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \]


c)   \( \displaystyle w=\frac{x}{x^{2}+y^{2}}-i\frac{y}{x^{2}+y^{2}} \)

d)   \( \displaystyle w=x^{2}y^{2}+i2x^{2}y^{2} \)

e)   \( \displaystyle w=\operatorname{e}^{y}(\cos x+i\sin x) \)


Use the Cauchy-Riemann Equations to verify the analyticity of the following functions, check where they are differentiable, and find their derivative.

a)   \( \displaystyle w=\bar{z} \)

b)   \( \displaystyle w=\text{Re}\;z \)

c)   \( \displaystyle w=z\;\text{Im}\;z \)

d)   \( \displaystyle w=z\;\text{Re}\;z \)

e)   \( \displaystyle w=|z| \)

f)   \( \displaystyle w=|\;z-1\;|^{2} \)

advertisement