Use the
Cauchy-Riemann Equations to verify the analyticity of the following functions, check where they are
differentiable, and find their derivative.
\( \mathsf{a)}\;\; \displaystyle w=\left(x^{2}-y^{2}-2x\right)+2iy\left(x-1\right) \)
\[ \mathsf{a)}\;\; \displaystyle w=\left(x^{2}-y^{2}-2x\right)+2iy\left(x-1\right) \]
\( \mathsf{b)}\;\; \displaystyle w=(\operatorname{e}^{y}+\operatorname{e}^{-y})\sin x+i(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \)
\[ \mathsf{b)}\;\; \displaystyle w=(\operatorname{e}^{y}+\operatorname{e}^{-y})\sin x+i(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \]
c)
\( \displaystyle w=\frac{x}{x^{2}+y^{2}}-i\frac{y}{x^{2}+y^{2}} \)
d)
\( \displaystyle w=x^{2}y^{2}+i2x^{2}y^{2} \)
e)
\( \displaystyle w=\operatorname{e}^{y}(\cos x+i\sin x) \)
Use the
Cauchy-Riemann Equations to verify the analyticity of the following functions, check where they are
differentiable, and find their derivative.
a)
\( \displaystyle w=\bar{z} \)
b)
\( \displaystyle w=\text{Re}\;z \)
c)
\( \displaystyle w=z\;\text{Im}\;z \)
d)
\( \displaystyle w=z\;\text{Re}\;z \)
e)
\( \displaystyle w=|z| \)
f)
\( \displaystyle w=|\;z-1\;|^{2} \)