e)
\( \displaystyle w=\operatorname{e}^{y}(\cos x+i\sin x) \)
Condition 1: The function w, given in the problem, is continuous everywhere in the complex
plane.
The
Cauchy-Riemann Equations are given by
\[
\bbox[#99CCFF,10px]
{\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}
\end{gather}}
\]
Identifying the functions
u(
x,
y), real part, and
v(
x,
y),
imaginary part
\[
\begin{array}{l}
w=\operatorname e^y(\cos x+i\sin x)\\[5pt]
w=\operatorname e^y\cos x+i\operatorname e^y\sin x\\[5pt]
u(x,y)=\operatorname e^y\cos x \\[5pt]
v(x,y)=\operatorname e^y\sin x
\end{array}
\]
Calculating the partial derivatives
\[
\begin{align}
& \dfrac{\partial u}{\partial x}=-\operatorname e^y\sin x \tag{I} \\[5pt]
& \dfrac{\partial v}{\partial y}=\operatorname e^y\sin x \tag{II} \\[5pt]
& \dfrac{\partial u}{\partial y}=\operatorname e^y\cos x \tag{III} \\[5pt]
& \dfrac{\partial v}{\partial x}=\operatorname e^y\cos x \tag{IV}
\end{align}
\]
Condition 2: The derivatives (I), (II), (III) and (IV) are continuous everywhere in the complex plane.
Applying the
Cauchy-Riemann Equations
\[
\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
-\operatorname e^y\sin x\neq\operatorname e^y\sin x \tag{V}
\end{gather}
\]
\[
\begin{gather}
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\[5pt]
\operatorname e^y\cos x\neq-\operatorname e^y\cos x \tag{VI}
\end{gather}
\]
Condition 3: The function w does not satisfy the Cauchy-Riemann Equations.
The function
w is continuous, the derivatives are continuous, but the function does not satisfy
Cauchy-Riemann Equations.
The function
w
is not analytic in the complex plane
.
The
Cauchy-Riemann Equations are not satisfied, but if in the equation (V), we do
\[
\begin{gather}
-\operatorname e^y\sin x=\operatorname e^y\sin x
\end{gather}
\]
this equality only holds if the expression is zero (in any other case we have a positive number equal to its
negative value). The exponential (e
y) will never be equal to zero, the equality will only
be true if the sine function is equal to zero
\[
\begin{gather}
\sin x=0\\[5pt]
x=\operatorname{arcsen}0\\[5pt]
\qquad\qquad\qquad\qquad x=n\pi \quad \text{,} \quad n=0, 1, 2, ...
\end{gather}
\]
and in the equation (VI)
\[
\begin{gather}
\operatorname e^y\cos x=-\operatorname e^y\cos x
\end{gather}
\]
will only be true, if
\[
\begin{gather}
\cos x=0\\[5pt]
x=\arccos 0\\[5pt]
\qquad\qquad\qquad\qquad x=n\frac{\pi}{2} \quad \text{,} \quad n=0, 1, 2, ...
\end{gather}
\]
Since there is no value of
x that satisfies both conditions simultaneously the function is not
differentiable.
The function
w
is not differentiable in the complex plane
.