e)
\( \displaystyle w=|z| \)
Writing the function as
\[
w=\sqrt{x^{2}+y^{2}\;}
\]
Condition 1: The function w is continuous everywhere in the complex plane.
The
Cauchy-Riemann Equations are given by
\[ \bbox[#99CCFF,10px]
{\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}
\end{gather}}
\]
Identifying the functions
u(
x,
y) and
v(
x,
y)
\[
\begin{array}{l}
u(x,y)=\sqrt{x^{2}+y^{2}}\\
v(x,y)=0
\end{array}
\]
Calculating the partial derivatives
\[
\begin{array}{l}
\dfrac{\partial u}{\partial x}=\dfrac{1}{2}\dfrac{2x}{\sqrt{x^{2}+y^{2}\;}}=\dfrac{x}{\sqrt{x^{2}+y^{2}\;}}\\[5pt]
\dfrac{\partial v}{\partial y}=0\\[5pt]
\dfrac{\partial u}{\partial y}=\dfrac{1}{2}\dfrac{2y}{\sqrt{x^{2}+y^{2}\;}}= \dfrac{y}{\sqrt{x^{2}+y^{2}\;}}\\[5pt]
\dfrac{\partial v}{\partial x}=0
\end{array}
\]
Condition 2: The derivatives are not continuous at point z = 0, where (x, y) = (0, 0).
Applying the
Cauchy-Riemann Equations
\[
\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\
\frac{x}{\sqrt{x^{2}+y^{2}\;}}\neq 0
\end{gather}
\]
\[
\begin{gather}
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\
\frac{y}{\sqrt{x^{2}+y^{2}\;}}\neq 0
\end{gather}
\]
Condition 3: The function w does not satisfy the Cauchy-Riemann Equations.
The function
w is constinuous and the derivatives are not continuous, and the function does not
satisfy the
Cauchy-Riemann Equations,
the function w is not analytic.
The
Cauchy-Riemann Equations are not satisfiedm but in the first condition, if we do
\[
\begin{gather}
\frac{x}{\sqrt{x^{2}+y^{2}\;}}=0\\
x=0.\sqrt{x^{2}+y^{2}\;}\\
x=0
\end{gather}
\]
and in the second equation
\[
\begin{gather}
\frac{y}{\sqrt{x^{2}+y^{2}\;}}=0\\
y=0.\sqrt{x^{2}+y^{2}\;}\\
y=0
\end{gather}
\]
but we cannot have (
x,
y)=(0, 0)
The function w is not differenciable in the complex plane.