\( \mathsf{b)}\;\; \displaystyle w=(\operatorname e^y+\operatorname e^{-y})\sin x+i(\operatorname e^y+\operatorname e^{-y})\cos x \)
\[ \mathsf{b)}\;\; \displaystyle w=(\operatorname e^y+\operatorname e^{-y})\sin x+i(\operatorname e^y+\operatorname e^{-y})\cos x \]
Condition 1: The function w, given in the problem, is continuous everywhere in the complex
plane.
The
Cauchy-Riemann Equations are given by
\[
\bbox[#99CCFF,10px]
{\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}
\end{gather}}
\]
Identifying the functions
u(
x,
y), real part, and
v(
x,
y),
imaginary part
\[
\begin{array}{l}
u(x,y)=(\operatorname e^y+\operatorname e^{-y})\sin x\\[5pt]
v(x,y)=(\operatorname e^y+\operatorname e^{-y})\cos x
\end{array}
\]
Calculating the partial derivatives
\[
\begin{align}
& \dfrac{\partial u}{\partial x}=(\operatorname e^y+\operatorname e^{-y})\cos x \tag{I} \\[5pt]
& \dfrac{\partial v}{\partial y}=(\operatorname e^y-\operatorname e^{-y})\cos x \tag{II} \\[5pt]
& \dfrac{\partial u}{\partial y}=(\operatorname e^y-\operatorname e^{-y})\sin x \tag{III} \\[5pt]
& \dfrac{\partial v}{\partial x}=-(\operatorname e^y+\operatorname e^{-y})\sin x \tag{IV}
\end{align}
\]
Condition 2: The derivatives (I), (II), (III) and (IV) are continuous everywhere in the complex plane.
Applying the
Cauchy-Riemann Equations
\[
\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
(\operatorname e^y+\operatorname e^{-y})\cos x\neq(\operatorname e^y-\operatorname e^{-y})\cos x
\end{gather}
\]
\[
\begin{gather}
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\[5pt]
(\operatorname e^y-\operatorname e^{-y})\sin x=-[-(\operatorname e^y+\operatorname e^{-y})\sin x]\\[5pt]
(\operatorname e^y-\operatorname e^{-y})\sin x\neq(\operatorname e^y+\operatorname e^{-y})\sin x
\end{gather}
\]
Condition 3: The function w does not satisfy the Cauchy-Riemann Equations.
The function
w is continuous, the derivatives are continuous, but the function does not satisfy the
Cauchy-Riemann Equations.
The function
w
is not analytic in the complex plane
.
The derivative is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}}
\end{gather}
\]
\[
\begin{gather}
w'=(\operatorname e^y+\operatorname e^{-y})\cos x-i(\operatorname e^y+\operatorname e^{-y})\sin x\neq(\operatorname e^y-\operatorname e^{-y})\cos x-i(\operatorname e^y-\operatorname e^{-y})\sin x
\end{gather}
\]
The derivative is not unique.
The function
w
is not differentiable at any point of the complex plane
.