a)
\( \displaystyle w=\left(x^2-y^2-2x\right)+2iy\left(x-1\right) \)
Condition 1: The function w, given in the problem, is continuous everywhere in the complex
plane.
The
Cauchy-Riemann Equations are given by
\[
\bbox[#99CCFF,10px]
{\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}
\end{gather}}
\]
Identifying the functions
u(
x,
y), real part, and
v(
x,
y),
imaginary part
\[
\begin{array}{l}
u(x,y)=x^2-y^2-2x\\[5pt]
v(x,y)=2y\left(x-1\right)
\end{array}
\]
Calculating the partial derivatives
\[
\begin{align}
& \dfrac{\partial u}{\partial x}=2x-2=2(x-1) \tag{I} \\[5pt]
& \dfrac{\partial v}{\partial y}=2(x-1) \tag{II} \\[5pt]
& \dfrac{\partial u}{\partial y}=-2y \tag{III} \\[5pt]
& \dfrac{\partial v}{\partial x}=2y \tag{IV}
\end{align}
\]
Condition 2: The derivatives (I), (II), (III) and (IV) are continuous everywhere in the complex plane.
Applying the
Cauchy-Riemann Equations
\[
\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
2(x-1)=2(x-1)
\end{gather}
\]
\[
\begin{gather}
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\[5pt]
-2y=-2y
\end{gather}
\]
Condition 3: The function w satisfies the Cauchy-Riemann Equations.
The function
w is continuous, the derivatives are continuous, and the
Cauchy-Riemann Equations
are satisfied.
The function
w
is analytic everywhere in the complex plane
.
The function
w
is differentiable everywhere in the complex plane (entire function)
.
The derivative is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{w'=2(x-1)+2yi}
\end{gather}
\]