Solved Problem on Cauchy-Riemann Equations
advertisement   



f)   \( \displaystyle w=|\;z-1\;|^{2} \)

Writing the function as
\[ \begin{gather} z-1=x+iy-1\\ z-1=(x-1)+iy \end{gather} \]
\[ \begin{gather} w=\left(\sqrt{(x-1)^{2}+y^{2}\;}\right)^{2}\\ w=(x-1)^{2}+y^{2} \end{gather} \]
Condition 1: The function w is continuous everywhere in the complex plane.

The Cauchy-Riemann Equations are given by
\[ \bbox[#99CCFF,10px] {\begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt] \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}} \end{gather}} \]
Identifying the functions u(x, y) and v(x, y)
\[ \begin{array}{l} u(x,y)=(x-1)^{2}+y^{2}\\ v(x,y)=0 \end{array} \]
Calculating the partial derivatives
\[ \begin{array}{l} \dfrac{\partial u}{\partial x}=2(x-1)\\[5pt] \dfrac{\partial v}{\partial y}=0\\[5pt] \dfrac{\partial u}{\partial y}=2y\\[5pt] \dfrac{\partial v}{\partial x}=0 \end{array} \]
Condition 2: The derivatives are continuous everywhere in the complex plane.

Applying the Cauchy-Riemann Equations
\[ \begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ 2(x-1)\neq 0 \end{gather} \]
\[ \begin{gather} \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\ 2y\neq 0 \end{gather} \]
Condition 3:The function w does not satisfy the Cauchy-Riemann Equations.

The function w and the derivatives are continuous, but the function does not satisfy the Cauchy-Riemann Equations, the function w is not analytic.

The Cauchy-Riemann Equations are not satisfiedm but in the first condition, if we do
\[ \begin{gather} 2(x-1)=0\\ x-1=0\\ x=1 \end{gather} \]
and in the second equation
\[ \begin{gather} 2y=0\\ y=0 \end{gather} \]
the function is differentiable at the point
\[ (x,y)=(1,0) \]
The derivative is given by
\[ \bbox[#99CCFF,10px] {f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}} \]
\[ \begin{gather} f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}\\[5pt] w'=2(x-1)+2yi \end{gather} \]
  • For (x, y)=(1, 0)
\[ w'=2(1-1)+2.0i \]
\[ \bbox[#FFCCCC,10px] {w'=0} \]

Note: If we did
\[ \begin{gather} f'(z)=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}\\[5pt] w'=0+2yi \end{gather} \]
  • For y = 0
\[ \begin{gather} w'=0 \end{gather} \]
advertisement