c)
\( \displaystyle w=\frac{x}{x^2+y^2}-i\frac{y}{x^2+y^2} \)
Condition 1: The function w, given in the problem, is not continuous at the point z = 0,
where (x, y) = (0, 0).
The
Cauchy-Riemann Equations are given by
\[
\bbox[#99CCFF,10px]
{\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}
\end{gather}}
\]
Identifying the functions
u(
x,
y), real part, and
v(
x,
y),
imaginary patt
\[
\begin{array}{l}
u(x,y)=\dfrac{x}{x^2+y^2}\\[5pt]
v(x,y)=-{\dfrac{y}{x^2+y^2}}
\end{array}
\]
Calculating the partial derivatives
\[
\begin{align}
& \dfrac{\partial u}{\partial x}=\dfrac{1.\left(x^2+y^2\right)-{x.}(2x)}{\left(x^2+y^2\right)^2}=\dfrac{x^2+y^2-2x^2}{\left(x^2+y^2\right)^2}=\dfrac{-x^2+y^2}{\left(x^2+y^2\right)^2} \tag{I} \\[5pt]
& \dfrac{\partial v}{\partial y}=-{\dfrac{1.\left(x^2+y^2\right)-{y.}(2y)}{\left(x^2+y^2\right)^2}}=-{\dfrac{x^2+y^2-2y^2}{\left(x^2+y^2\right)^2}}=\dfrac{-x^2+y^2}{\left(x^2+y^2\right)^2} \tag{II} \\[5pt]
& \dfrac{\partial u}{\partial y}=-{\dfrac{{x}(2y)}{x^2+y^2}}=-{\dfrac{2xy}{\left(x^2+y^2\right)^2}} \tag{III} \\[5pt]
& \dfrac{\partial v}{\partial x}=-\left(-{\dfrac{{y}(2x)}{x^2+y^2}}\right)=\dfrac{2xy}{\left(x^2+y^2\right)^2} \tag{IV}
\end{align}
\]
Condition 2: The derivatives (I), (II), (III) and (IV) are not continuous at the point z = 0, where
(x, y) = (0, 0).
Applying the
Cauchy-Riemann Equations
\[
\begin{gather}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt]
\frac{-x^2+y^2}{\left(x^2+y^2\right)^2}=\frac{-x^2+y^2}{\left(x^2+y^2\right)^2}
\end{gather}
\]
\[
\begin{gather}
\frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\[5pt]
-{\frac{2xy}{x^2+y^2}}=-\left[\frac{2xy}{x^2+y^2}\right]\\[5pt]
-{\frac{2xy}{x^2+y^2}}=-{\frac{2xy}{x^2+y^2}}
\end{gather}
\]
Condition 3: The function w satisfies Cauchy-Rerimmann Equations, except at z = 0.
The function
w is not continuous, the derivatives are not continuous, and the function satisfies the
Cauchy-Rerimmann Equations.
The function
w
is analytic everywhere in the complex plane except at z = 0
.
The derivative is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}}
\end{gather}
\]
\[
\begin{gather}
f'(z)=\frac{-x^2+y^2}{\left(x^2+y^2\right)^2}+i\frac{2xy}{\left(x^2+y^2\right)^2}=\frac{-x^2+y^2}{\left(x^2+y^2\right)^2}-i\left[-{\frac{2xy}{\left(x^2+y^2\right)^2}}\right]
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{w'=\frac{-x^2+y^2}{\left(x^2+y^2\right)^2}+i\frac{2xy}{\left(x^2+y^2\right)^2}}
\end{gather}
\]