Inequações
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
d)
\( -3x+1\leqslant 0 \)
e)
\( -4x+4\geqslant 0 \)
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
e fazer um esquema da região de validade da inequação
b)
\( 7x+28\leqslant 0 \)
e)
\( -6x+6\geqslant 0 \)
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
\( \mathsf{b)}\;\; (2x-1).(-3x+2).(x+1)\geqslant 0 \)
\[ \mathsf{b)}\;\; (2x-1).(-3x+2).(x+1)\geqslant 0 \]
c)
\( \dfrac{x+1}{x-1}>0 \)
d)
\( \dfrac{(x-1)}{(-x+2)}.(x+3)\leqslant 0 \)
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
b)
\( x^{2}-x-1\leqslant 0 \)
c)
\( -x^{2}-2x+2\geqslant 0 \)
d)
\( x^{2}-3x+2\leqslant 0 \)
f)
\( -x^{2}+2x+2\geqslant 0 \)
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
a)
\( x^{2}-2x+1\geqslant 0 \)
b)
\( 9x^{2}-6x+1\leqslant 0 \)
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
c)
\( -x^{2}+x-3\geqslant 0 \)
Resolver as inequações
\( \mathbb{U}=\mathbb{R} \)
\( \mathsf{a)}\;\; (x^{2}-5x+6)(-x^{2}-x+1)\leqslant 0 \)
\[ \mathsf{a)}\;\; (x^{2}-5x+6)(-x^{2}-x+1)\leqslant 0 \]
\( \mathsf{b)}\;\; (x^{2}-x)(x+1)(x^{2}-1)\geqslant 0 \)
\[ \mathsf{b)}\;\; (x^{2}-x)(x+1)(x^{2}-1)\geqslant 0 \]
\( \mathsf{c)}\;\; -x(x^{2}-2)(-x^{2}-3x)<0 \)
\[ \mathsf{c)}\;\; -x(x^{2}-2)(-x^{2}-3x)<0 \]
\( \mathsf{d)}\;\; \dfrac{x(x-1)(-x^{2}+2)(x+3)}{(x^{2}-5x+6)(x-3)}\geqslant 0 \)
\[ \mathsf{d)}\;\; \dfrac{x(x-1)(-x^{2}+2)(x+3)}{(x^{2}-5x+6)(x-3)}\geqslant 0 \]
\( \mathsf{e)}\;\; \dfrac{(2x-1)(x+1)(x+2)(x^{2}+x+1)}{(x^{2}-4)(-x+2)}\leqslant 0 \)
\[ \mathsf{e)}\;\; \dfrac{(2x-1)(x+1)(x+2)(x^{2}+x+1)}{(x^{2}-4)(-x+2)}\leqslant 0 \]