Exercício Resolvido de Inequações
a)
\( (x^{2}-5x+6)(-x^{2}-x+1)\leqslant 0 \)
\[
(\underbrace{x^{2}-5x+6}_{A})(\underbrace{-x^{2}-x+1}_{B})\leqslant 0
\]
\[
\begin{gathered}
x^{2}-5x+6=0\\[5pt]
\Delta=b^{2}-4ac=(-5)^{2}-4.1.6=25-24=1\\[5pt]
t=\frac{-b\pm\sqrt{\Delta \;}}{2a}=\frac{-(-5)\pm \sqrt{1\;}}{2.1}=\frac{5\pm1}{2}\\[5pt]
x=2\qquad \text{ou}\qquad x=3
\end{gathered}
\]
\[
\begin{gathered}
-x^{2}-x+1=0\\[5pt]
\Delta=b^{2}-4ac=(-1)^{2}-4.(-1).1=1+4=5\\[5pt]
t=\frac{-b\pm\sqrt{\Delta \;}}{2a}=\frac{-(-1)\pm \sqrt{5\;}}{2.(-1)}=\frac{1\pm\sqrt{5\;}}{-2}\\[5pt]
x=\frac{-1-\sqrt{5\;}}{2}\qquad \text{ou}\qquad x=\frac{1+\sqrt{5\;}}{2}
\end{gathered}
\]
Observação:
\( \frac{-1-\sqrt{5\;}}{2}\simeq -1,62 \)
e
\( \frac{1+\sqrt{5\;}}{2}\simeq 0,62 \)
\[ \bbox[#FFCCCC,10px]
{V=\left.\phantom{{\frac{}{}}}\right]\;-\infty;\frac{-1-\sqrt{5\;}}{2}\;\left.\phantom{{\frac{}{}}}\right]\;\cup\;\left[\phantom{{\frac{}{}}}\right.\;\frac{-1+\sqrt{5\;}}{2};2\;\left.\phantom{{\frac{}{}}}\right]\;\cup\;\left[\phantom{{}}\right.\;3;+\infty \;\left[\phantom{{}}\right.}
\]