e)
\( \dfrac{(2x-1)(x+1)(x+2)(x^{2}+x+1)}{(x^{2}-4)(-x+2)}\leqslant 0 \)
\[
\frac{(\overbrace{2x-1}^{A})(\overbrace{x+1}^{B})(\overbrace{x+2}^{C})(\overbrace{x^{2}+x+1}^{D})}{(\underbrace{x^{2}-4}_{E})(\underbrace{-x+2}_{F})}\leqslant 0
\]
\[
\begin{gathered}
2x-1=0\\2x=1\\[5pt]
x=\frac{1}{2}
\end{gathered}
\]
\[
\begin{gathered}
x+1=0\\[5pt]
x=-1
\end{gathered}
\]
\[
\begin{gathered}
x+2=0\\[5pt]
x=-2
\end{gathered}
\]
\[
\begin{gathered}
x^{2}+x+1=0\\[5pt]
\Delta=b^{2}-4ac=1^{2}-4.1.1=1-4=-3\\[5pt]
\Delta <0
\end{gathered}
\]
\[
\begin{gathered}
x^{2}-4=0\\
x^{2}=4\\
x=\sqrt{4\;}\\[5pt]
x=-2\qquad \text{ou}\qquad x=2
\end{gathered}
\]
\[
\begin{gathered}
-x+2=0\\[5pt]
x=2
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{V=\left.\phantom{{}}\right]\;-\infty;-2\;\left[\phantom{{}}\right.\;\cup\;\left.\phantom{{}}\right]\;-2;-1\;\left.\phantom{{}}\right]\;\cup\;\left[\phantom{{\frac{}{}}}\right.\;\frac{1}{2};2\;\left[\phantom{{\frac{}{}}}\right.\;\cup\;\left.\phantom{{}}\right]\;2;+\infty \;\left[\phantom{{}}\right.}
\]