A blender has a power of 90 W and is used to stir 200 g of water for 1 minute. The blender loses 10% of its
energy through dissipation, the other 90% of the energy is the work transferred as heat to the water inside
the blender. Calculate the heating of the mass of water. Given: 1 cal = 4.2 J.
Problem data:
- Blender power: \( \mathscr P = 90 W \);
- Energy dissipated: Ed = 10% E;
- Mass of water: m = 200 g;
- Time interval: Δt = 1 min;
- Specific heat of water: c = 1 cal/g°C;
- Mechanical equivalent of heat: 1 cal = 4,2 J.
Problem diagram:
Of the total energy
E produced by the electric motor, 10% is lost through dissipation
Ed (such as heat and sound produced by the blender), and the other 90% of the energy
is used in work
W to produce heat
Q which heats the water (Figure 1).
\[
\begin{gather}
E-E_d=W=Q
\end{gather}
\]
Solution:
Converting the time interval given in minutes (min) to seconds (s)
\[
\begin{gather}
\Delta t=1\;\mathrm{\cancel{min}}\times\frac{60\;\mathrm s}{1\;\mathrm{\cancel{min}}}=60\;\mathrm s
\end{gather}
\]
The power delivered by the blender during the running time is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathscr P=\frac{E}{\Delta t}}
\end{gather}
\]
\[
\begin{gather}
E=\mathscr P\Delta t \\[5pt]
E=(90\;\mathrm W)(60\;\mathrm s)\\[5pt]
E=5400\;\mathrm J
\end{gather}
\]
The dissipated energy will be
\[
\begin{gather}
E_d=10\text{%}E \\[5pt]
E_d=\frac{10}{100}\times 5400\;\mathrm J \\[5pt]
E_d=0.1\times 5400\;\mathrm J \\[5pt]
E_d=540\;\mathrm J
\end{gather}
\]
The energy used in the work to heat the water will be
\[
\begin{gather}
W=E-E_d \\[5pt]
W=(5400-540)\;\mathrm J \\[5pt]
W=4860\;\mathrm J
\end{gather}
\]
Converting the calculated energy in joules (J) to calories (cal) used in the problem
\[
\begin{gather}
W=4860\;\mathrm{\cancel J}\times\frac{1\;\mathrm{cal}}{4.2\;\mathrm{\cancel J}}\approx 1157\;\mathrm{cal}
\end{gather}
\]
\[
\begin{gather}
W=Q=1157\;\mathrm{cal}
\end{gather}
\]
The equation of heat is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{Q=mc\Delta\theta}
\end{gather}
\]
\[
\begin{gather}
\Delta\theta=\frac{Q}{mc} \\[5pt]
\Delta\theta=\frac{1157\;\mathrm{\cancel{cal}}}{(200\;\mathrm{\cancel g})\left(1\;\mathrm{\frac{\cancel{cal}}{\cancel g°C}}\right)}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\Delta \theta \approx 5.8\;\mathrm{°C}}
\end{gather}
\]
Note: The symbol θ was used for the temperature, so as not to confuse it with t used
for the time interval in the power formula.