Solved Problem on One-dimensional Motion
advertisement   



The table below describes the velocities of a particle moving in a given reference frame.

t (s) 0 1 2 3 4 5 6
v (m/s) 9 6 3 0 -3 -6 -9

from the table find:
a) The initial speed of the particle;
b) The instant when the particle changes its direction;
c) The average acceleration of the particle between the instants 1 s and 2 s;
d) The average acceleration of the particle between the instants 5 s and 6 s.


Solution

a) From the table, we have that for t=0, the initial speed is
\[ \begin{gather} \bbox[#FFCCCC,10px] {v_0=9\;\mathrm{m/s}} \end{gather} \]

b) At time t=2 s the velocity is positive (v>0), at time t=4 s, speed is negative (v<0), the particle changes its direction when the speed is zero at t=3 s.


c) Using the equation for the average acceleration
\[ \begin{gather} \bbox[#99CCFF,10px] {\bar a=\frac{\Delta v}{\Delta t}=\frac{v_f-v_i}{t_f-t_i}} \end{gather} \]
substituting the values in the table
\[ \begin{gather} \bar a=\frac{3\;\mathrm{\frac{m}{s}}-6\;\mathrm{\frac{m}{s}}}{2\;\mathrm s-1\;\mathrm s}\\[5pt] \bar a=-\frac{3\;\mathrm{\frac{m}{s}}}{1\;\mathrm s} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\bar a=-3\;\mathrm{m/s^2}} \end{gather} \]

d) Using the equation for the average acceleration again
\[ \begin{gather} \bar a=\frac{-9\;\mathrm{\frac{m}{s}}-\left(-6\;\mathrm{\frac{m}{s}}\right)}{6\;\mathrm s-5\;\mathrm s}\\[5pt] \bar a=\frac{-9\;\mathrm{\frac{m}{s}}+6\;\mathrm{\frac{m}{s}}}{1\;\mathrm s}\\[5pt] \bar a=-\frac{3\;\mathrm{\frac{m}{s}}}{1\;\mathrm s} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\bar a=-3\;\mathrm{m/s^2}} \end{gather} \]
advertisement