On the Moon, a stone is released, at rest from a height of 20 meters. It falls, under the action of the lunar
acceleration due to gravity, until reaching the ground with a speed
v. Find how high the stone should
be dropped on Earth, so that it hits the ground at the same speed
v. The acceleration due to gravity
on Earth
gE = 9.8 m/s
2, acceleration due to gravity on the Moon
gM = 1.6 m/s
2.
Problem data:
- Height of fall: HM = 20 m;
- Initial speed of the stone: v0 = 0;
- Acceleration due to gravity on Earth: gE = 9.8 m/s2;
- Acceleration due to gravity on the Moon: gM = 1.6 m/s2.
Problem diagram:
We choose a frame of reference oriented upwards with origin on the ground. In both cases, the accelerations
due to gravity point to the ground, and their signals will be negative.
For the Moon, we have the initial position of the stone
S0M = 20 m and the final
position
SM = 0, for the Earth, the initial position will be
S0E =
HE, and the final position will be
SE = 0.
Solution
To find the final speed with which the stone hits the ground, since we do not have the time interval of fall,
we use the equation of velocity as a function of displacement
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v^2=v_0^2+2a\Delta S}
\end{gather}
\]
\[
\begin{gather}
v_{\small M}^2=v_0^2+2g_{\small M}\Delta S_{\small M}\\[5pt]
v_{\small M}^2=v_0^2+2g_{\small M}(S_{\small M}-S_{0\small M})\\[5pt]
v_{\small M}^2=0-2\times\left(1.6\;\mathrm{\small{\frac{m}{s^2}}}\right)(0-20\;\mathrm m)\\[5pt]
v_{\small M}=\sqrt{64\;\mathrm{\small{\frac{m^2}{s^2}}}\;}\\[5pt]
v_{\small M}=8\;\mathrm{m/s}
\end{gather}
\]
We want the speed at which the stone reaches the ground, on Earth, to be the same speed as the Moon,
v =
vM =
vE.
\[
\begin{gather}
v_{\small M}^2=v_0^2+2g_{\small E}\Delta S_{\small E}\\[5pt]
v_{\small M}^2=v_0^2+2g_{\small E}(S_{\small E}-H_{\small E})\\[5pt]
S_{\small E}-H_{\small E}=\frac{v_{\small M}^2-v_0^2}{2g_{\small E}}\\[5pt]
-H_{\small E}=\frac{v_{\small M}^2-v_0^2}{2g_{\small E}}-S_{\small E}\\[5pt]
-H_{\small E}=\frac{\left(8\;\mathrm{\frac{m}{s}}\right)^2-0^2}{2\times\left(-9,8\;\mathrm{\frac{m}{s^2}}\right)}-0\\[5pt]
-H_{\small E}=\frac{64\;\mathrm{\frac{m^\cancel 2}{\cancel{s^2}}}}{-19,6\;\mathrm{\frac{\cancel m}{\cancel{s^2}}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{H_{\small E}\approx 3.3\;\mathrm m}
\end{gather}
\]