Solved Problem on One-dimensional Motion
advertisement   



On the Moon, a stone is released, at rest from a height of 20 meters. It falls, under the action of the lunar acceleration due to gravity, until reaching the ground with a speed v. Find how high the stone should be dropped on Earth, so that it hits the ground at the same speed v. The acceleration due to gravity on Earth gE = 9.8 m/s2, acceleration due to gravity on the Moon gM = 1.6 m/s2.

Problem data:
  • Height of fall:    HM = 20 m;
  • Initial speed of the stone:    v0 = 0;
  • Acceleration due to gravity on Earth:   gE = 9.8 m/s2;
  • Acceleration due to gravity on the Moon:    gM = 1.6 m/s2.
Problem diagram:

We choose a frame of reference oriented upwards with origin on the ground. In both cases, the accelerations due to gravity point to the ground, and their signals will be negative.

Figure 1

For the Moon, we have the initial position of the stone S0M = 20 m and the final position SM = 0, for the Earth, the initial position will be S0E = HE, and the final position will be SE = 0.

Solution

To find the final speed with which the stone hits the ground, since we do not have the time interval of fall, we use the equation of velocity as a function of displacement
\[ \begin{gather} \bbox[#99CCFF,10px] {v^2=v_0^2+2a\Delta S} \end{gather} \]
  • For the Moon:
\[ \begin{gather} v_{\small M}^2=v_0^2+2g_{\small M}\Delta S_{\small M}\\[5pt] v_{\small M}^2=v_0^2+2g_{\small M}(S_{\small M}-S_{0\small M})\\[5pt] v_{\small M}^2=0-2\times\left(1.6\;\mathrm{\small{\frac{m}{s^2}}}\right)(0-20\;\mathrm m)\\[5pt] v_{\small M}=\sqrt{64\;\mathrm{\small{\frac{m^2}{s^2}}}\;}\\[5pt] v_{\small M}=8\;\mathrm{m/s} \end{gather} \]
We want the speed at which the stone reaches the ground, on Earth, to be the same speed as the Moon, v = vM = vE.
  • For the Earth:
\[ \begin{gather} v_{\small M}^2=v_0^2+2g_{\small E}\Delta S_{\small E}\\[5pt] v_{\small M}^2=v_0^2+2g_{\small E}(S_{\small E}-H_{\small E})\\[5pt] S_{\small E}-H_{\small E}=\frac{v_{\small M}^2-v_0^2}{2g_{\small E}}\\[5pt] -H_{\small E}=\frac{v_{\small M}^2-v_0^2}{2g_{\small E}}-S_{\small E}\\[5pt] -H_{\small E}=\frac{\left(8\;\mathrm{\frac{m}{s}}\right)^2-0^2}{2\times\left(-9,8\;\mathrm{\frac{m}{s^2}}\right)}-0\\[5pt] -H_{\small E}=\frac{64\;\mathrm{\frac{m^\cancel 2}{\cancel{s^2}}}}{-19,6\;\mathrm{\frac{\cancel m}{\cancel{s^2}}}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {H_{\small E}\approx 3.3\;\mathrm m} \end{gather} \]
advertisement