A car moves along a straight road with a speed of 200 km/h. When this car passes through another car,
initially at rest at a gas station, it begins to move with a constant acceleration of 4.5 m/s
2
until it reaches the speed of 200 km/h. Determine:
a) What is the time elapsed until the car leaving the gas station reaches the speed of 200 km/h?
b) How far are they from each other when their speeds are equal?
Problem data:
- Speed of car A: vA = 200 km/h;
- Initial speed of car B: v0B = 0;
- Final speed of car B: vB = 200 km/h;
- Acceleration of car B: aB = 4.5 m/s2.
Problem diagram:
Solution
First, let's convert the speeds of the cars given in kilometers per hour (km/h) to meters per second (m/s)
used in the
International System of Units (
SI)
\[
\begin{gather}
v_{\small A}=v_{\small B}=200\frac{\cancel{\mathrm{km}}}{\cancel{\mathrm h}}\times\frac{1000\;\mathrm m}{1\;\cancel{\mathrm{km}}}\times\frac{1\;\cancel{\mathrm h}}{3600\;\mathrm s}=\frac{200}{3.6}\;\frac{\mathrm m}{\mathrm s}=55.6\;\mathrm{m/s}
\end{gather}
\]
a) The equation of velocity as a function of time is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v=v_0+a t}
\end{gather}
\]
For car
B:
\[
\begin{gather}
v_{\small B}=v_{0 B}+a_{\small B}t\\[5pt]
55.6\;\mathrm{\small{\frac{m}{s}}}=0+\left(4.5\;\mathrm{\small{\frac{m}{s^2}}}\right)t\\[5pt]
t=\frac{55.6\;\mathrm{\frac{\cancel m}{\cancel s}}}{4.5\;\mathrm{\frac{\cancel m}{s^\cancel 2}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{t\approx 12.4\;\mathrm s}
\end{gather}
\]
b) The car
A moves with constant speed, it is in
Uniform Rectilinear Motion, the equation of
displacement as a function of time is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_0+vt}
\end{gather}
\]
using this equation, the data from car
A and the time interval found in item (a)
\[
\begin{gather}
S_{\small A}=S_{0\small A}+v_{\small A}t\\[5pt]
S_{\small A}=0+\left(55.6\;\mathrm{\small{\frac{m}{\cancel s}}}\right)\left(12.4\;\mathrm{\cancel s}\right)\\[5pt]
S_{\small A}\approx 689.4\;\mathrm m
\end{gather}
\]
The car
B moves with constant acceleration, it is in
Uniformly Accelerated Rectilinear Motion,
the equation of displacement as a function of this time is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_0+v_0t+\frac{a}{2}t^2}
\end{gather}
\]
using this equation, the data from car
B, and the time interval found in item (a)
\[
\begin{gather}
S_{\small B}=S_{0\small B}+v_{0\small B}t+\frac{a_{\small B}}{2}t^2\\[5pt]
S_{\small B}=0+0t+\;\left(\frac{4.5\;\mathrm{\frac{m}{s^2}}}{2}\right)(12.4\;\mathrm s)^2\\[5pt]
S_{\small B}=346\;\mathrm m
\end{gather}
\]
The distance between the cars will be given by
\[
\begin{gather}
\Delta S=|S_{\small A}-S_{\small B}|\\[5pt]
\Delta S=|689.4\;\mathrm m-346\;\mathrm m|
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\Delta S=343.4\;\mathrm m}
\end{gather}
\]