Solved Problem on Collisions
advertisement   



Two bodies, A and B, identical and of the same mass, are on a horizontal surface. Initially, body A has a speed v0 = 5 m/s, and body B is at rest. Body A collides with body B in a head-on elastic collision. Show that, in these conditions, after the collision, the speeds of bodies will be exchanged.


Problem data:
  • Mass of ball A:    mA = m;
  • Mass of ball B:    mB = m;
  • Initial speed of ball A:    v0A = 5 m/s;
  • Initial speed of ball B:    v0B = 0 m/s;
  • Coefficient of restitution (elastic collision):    e = 1.
Problem diagram:

Figure 1

Solution

The momentum of a body is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {p=mv} \end{gather} \]
From the Principle of Conservation of Momentum, we have that the initial momentum is equal to the final momentum
\[ \begin{gather} p_{i}=p_{f}\\[5pt] p_{\small A i}+p_{\small B i}=p_{\small A f}+p_{\small B f}\\[5pt] mv_{0 \small A}+mv_{0 \small B}=mv_{\small A}+mv_{\small B} \end{gather} \]
factoring the mass m on both sides
\[ \begin{gather} \cancel{m}\left(v_{0\small A}+v_{0\small B}\right)=\cancel{m}\left(v_{\small A}+v_{\small B}\right) \end{gather} \]
substituting the problem data
\[ \begin{gather} v_{0\small A}+v_{0\small B}=v_{\small A}+v_{\small B}\\[5pt] 5\;\mathrm{\frac{m}{s}}+0=v_{\small A}+v_{\small B}\\[5pt] v_{\small A}+v_{\small B}=5\;\mathrm{\frac{m}{s}} \tag{I} \end{gather} \]
The coefficient of restitution is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {e=-{\left[\frac{v_{\small B}-v_{\small A}}{v_{0\small B}-v_{0\small A}}\right]}} \end{gather} \]
\[ \begin{gather} 1=-{\left[\frac{v_{\small B}-v_{\small A}}{0-5\;\mathrm{\frac{m}{s}}}\right]}\\[5pt] -1=\frac{v_{\small B}-v_{\small A}}{-5\;\mathrm{\frac{m}{s}}}\\[5pt] (-1)\times\left(-5\;\mathrm{\frac{m}{s}}\right)=v_{\small B}-v_{\small A}\\[5pt] v_{\small B}-v_{\small A}=5\;\mathrm{\frac{m}{s}} \tag{II} \end{gather} \]
Equations (I) and (II) can be written as a system of two equations with two unknowns (vA and vB), and adding the two equations
\[ \begin{gather} \frac{ \left\{ \begin{matrix} \phantom{\text{--}}v_{\small A}+v_{\small B}=5\;\mathrm{\frac{m}{s}}\\ -v_{\small A}+v_{\small B}=5\;\mathrm{\frac{m}{s}} \end{matrix} \right. } {0+2v_{\small B}=10\;\mathrm{\frac{m}{s}}}\\[5pt] v_{\small B}=\frac{10\;\mathrm{\frac{m}{s}}}{2}\\[5pt] v_{\small B}=5\;\mathrm{m/s} \end{gather} \]
substituting the value of vB found in the first equation
\[ \begin{gather} v_{\small A}+5\;\mathrm{\frac{m}{s}}=5\;\mathrm{\frac{m}{s}}\\[5pt] v_{\small A}=5\;\mathrm{\frac{m}{s}}-5\;\mathrm{\frac{m}{s}}\\[5pt] v_{\small A}=0 \end{gather} \]
How we wanted vA = 0 and vB = 5 m/s. The bodies exchanged velocities after the collision.
advertisement