Solved Problem on Impulse
advertisement   



A body with a mass of 2 kg, and a speed of 4 m/s in the horizontal direction, receives the impulse of a force. Its speed change to 3 m/s to the vertical direction. Knowing that the force acted in the particle in a time interval that lasted 1 ms, determine:
a) The impulse received by the particle;
b) The force that acts in the particle.


Problem data:
  • Mass of body:    m = 2 kg;
  • Initial speed of body:    v1 = 4 m/s;
  • Final speed of body:    v2 = 3 m/s;
  • Interval of time when the force acts:    Δt = 1 ms.
Problem diagram:

Figure 1

Solution

First, we will convert the time interval given in milliseconds (ms) to seconds used in the International System of Units (SI)
\[ \begin{gather} \Delta t=1\;\text{ms}=1\times 10^{-3}\;\text{s}=0.001\;\text{s} \end{gather} \]
a) Applying the Impulse-Momentum Theorem, the impulse is equal to the change in momentum (vectorially calculated)
\[ \begin{gather} \bbox[#99CCFF,10px] {\vec{I}=\Delta \vec{p}={\vec{p}}_{f}-{\vec{p}}_{i}} \tag{I} \end{gather} \]
The magnitude of momentum is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {p=mv} \tag{II} \end{gather} \]
applying the equation (II) to the initial and final momenta
\[ \begin{gather} p_{1}=mv_{1}\\[5pt] p_{1}=(2\;\mathrm{kg})\times\left(4\;\mathrm{\frac{m}{s}}\right)\\[5pt] p_{1}=8\;\text{kg.m/s}\\[10pt] p_{2}=mv_{2}\\[5pt] p_{2}=(2\;\mathrm{kg})\times\left(3\;\mathrm{\frac{m}{s}}\right)\\[5pt] p_{2}=6\;\text{kg.m/s} \end{gather} \]
The equation (I) can be represented as in Figure 2. The magnitude of impulse (\( |\vec{I}|=I \)) can be calculated by the Pythagorean theorem
\[ \begin{gather} I^{2}=p_{1}^{2}+p_{2}^{2}\\[5pt] I^{2}=\left(8\;\mathrm{\frac{kg.m}{s}}\right)^2+\left(6\;\mathrm{\frac{kg.m}{s}}\right)^2\\[5pt] I^{2}=64\;\mathrm{\frac{kg^2.m^2}{s^2}}+36\;\mathrm{\frac{kg^2.m^2}{s^2}}\\[5pt] I=\sqrt{100\;\mathrm{\frac{kg^2.m^2}{s^2}}\;}\\[5pt] I=10\;\mathrm{kg.m/s}=10\;\mathrm{N.s} \end{gather} \]

Figure 2

The angle θ that the impulse vector does with the horizontal will be
\[ \begin{gather} \tan\theta =\frac{\text{opposite leg}}{\text{adjacent leg}}=\frac{p_{2}}{p_{1}}\\[5pt] \tan\theta=\frac{6\;\mathrm{\frac{\cancel{kg}.\cancel m}{\cancel s}}}{8\;\mathrm{\frac{\cancel{kg}.\cancel m}{\cancel s}}}\\[5pt] \tan\theta =0.75\\[5pt] \theta=\arctan 0.75\\[5pt] \theta \simeq 37° \end{gather} \]
  • Magnitude: 10 N.s;
  • Direction: Making an angle of 37º with horizontal to the left.

b) The force that acted on the particle is given by
\begin{gather} \[ \bbox[#99CCFF,10px] {\vec{I}=\vec{F}\Delta t} \end{gather} \]
the magnitude of force
\[ \begin{gather} I=F\Delta t\\[5pt] F=\frac{I}{\Delta t}\\[5pt] F=\frac{10\;\mathrm{N.\cancel s}}{1\times 10^{-3}\;\mathrm{\cancel s}}\\[5pt] F=10\times 10^3\;\mathrm N\\[5pt] F=10000\;\mathrm N \end{gather} \]
Figure 3

Force and impulse have the same direction (Figure 3)
  • Magnitude: 10 000 N;
  • Direction: Making an angle of 37º with horizontal to the left.
advertisement