A locomotive departs from station
A and arrives at station
B, 240 km away from station
A, after 4 hours. The diameter of the wheels is 1.25 m. Determine:
a) The average number of rotations per minute of each wheel;
b) The angular speed of a point situated on the wheel.
Problem data:
- Distance between stations: Δ S = 240 km = 240,000 m;
- Time of travel: Δ t = 4 h;
- Diameter of a wheel: d = 1.25 m;
Problem diagram:
We chose a reference frame with an origin in station
A and pointing to the right towards station
B.
Solution
First, we convert the time units, given in hours (h), to minutes (min) used in the problem
\[
\begin{gather}
\Delta t=4\;{\mathrm{\cancel h}}\times\frac{60\;\mathrm{{min}}}{1\;\mathrm{{\cancel h}}}=240\;\mathrm{min}
\end{gather}
\]
a) The number of rotations,
n, that the wheel will give throughout the trip will be
\[
\begin{gather}
n=\frac{\text{total displacement}}{\text{length of one lap}}=\frac{\Delta S}{C} \tag{I}
\end{gather}
\]
The length of the circle (one lap) is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{C=2\pi r}
\end{gather}
\]
as
d = 2
r is equal to the diameter of the wheel given in the problem and letting
π = 3.14
\[
\begin{gather}
C=\pi d\\[5pt]
C=3.14\times(1.25\;\mathrm m)\\[5pt]
C\approx 3.93\;\mathrm m
\end{gather}
\]
Substituting this value and the distance traveled given in equation (I)
\[
\begin{gather}
n=\frac{240000\;\mathrm m}{3.93\;\mathrm m}\\[5pt]
n\approx 61068\;\text{rotations} \tag{II}
\end{gather}
\]
that is the number of rotations that the wheel makes throughout the trip. Dividing this value by the
time of the trip in minutes, found above
\[
\begin{gather}
N=\frac{n}{\Delta t}\\[5pt]
N=\frac{61068\;\text{rotations}}{240\;\mathrm{min}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{N\approx 254.5\;\mathrm{rpm}}
\end{gather}
\]
b) The angular velocity is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\omega=2\pi f} \tag{III}
\end{gather}
\]
to find the frequency,
f, we convert the number of rotations per minute found in the previous item
in hertz (Hz)
\[
\begin{gather}
f=254.5\;\frac{\text{rotations}}{\cancel{\mathrm{min}}}\times\frac{1\;\mathrm{\cancel{min}}}{60\;\mathrm s}=4.2\;\mathrm{Hz}
\end{gather}
\]
substituting this value into equation (III)
\[
\begin{gather}
\omega=2\times 3.14\times\left(4.2\;\mathrm{\frac{1}{s}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\omega=26.4\;\mathrm{rad/s}}
\end{gather}
\]