In an old clock of hands, find the period and frequency of rotation of the hours hand, minutes hand, and
seconds hand (answers in seconds and hertz).
Problem diagram:
Solution
The hour's hand gives a turn in 12 h. The period will be
\[
\begin{gather}
T=\left(12\;\mathrm{\cancel h}\right)\times\left(\frac{3600\;\mathrm s}{1\;\mathrm{\cancel h}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T=43200\;\mathrm s}
\end{gather}
\]
the frequency as a function of period is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f=\frac{1}{T}}\tag{I}
\end{gather}
\]
\[
\begin{gather}
f=\frac{1}{43200\;\mathrm s}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{f\approx 0.000023=2.3\times 10^{-5}\;\mathrm{Hz}}
\end{gather}
\]
The minute's hand gives a turn in 60 min. The period will be
\[
\begin{gather}
T=\left(60\;\mathrm{\cancel{min}}\right)\times\left(\frac{60\;\mathrm s}{1\;\mathrm{\cancel{min}}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T=3600\;\mathrm s}
\end{gather}
\]
for the frequency, applying equation ()
\[
\begin{gather}
f=\frac{1}{3600\;\mathrm s}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{f\approx 0.00028=2.8\times 10^{-4}\;\mathrm{Hz}}
\end{gather}
\]
The second's hand takes a turn in 60 s. The period will be
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T=60\;\mathrm s}
\end{gather}
\]
for the frequency, applying equation (I)
\[
\begin{gather}
f=\frac{1}{60\;\mathrm s}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{f\approx 0.017=1.7\times 10^{-2}\;\mathrm{Hz}}
\end{gather}
\]