At a point in São Paulo (a Brazilian city), the earth's magnetic field vector has magnitude
\( B_{\small E}=8 \pi \times 10^{–6} \mathrm T \).
At this point, a solenoid is placed so that its axis is parallel to the Earth's magnetic field
\( {\vec B}_{\small E} \).
The length of the solenoid is 0.25 m and it has 500 turns. Calculate the magnitude of its current so that
the magnetic field inside it is zero. Vacuum
Magnetic Permeability
\( \mu_0=4\pi \times 10^{-7}\;\mathrm{\frac{T.m}{A}} \).
Problem data:
- Solenoid length: ℓ = 0.25 m;
- Number of solenoid turns: N = 500 turns;
- Magnetic field at the location: \( B_{\small E}=8 \pi \times 10^{–6} \mathrm T \).
-
Vacuum Magnetic Permeability:
\( \mu_0=4\pi \times 10^{-7}\;\mathrm{\frac{T.m}{A}} \).
Problem diagram:
We assume the direction of the Earth's magnetic field,
\( {\vec B}_{\small E} \),
is positive (Figure 1).
Solution
The resultant vector of the magnetic field is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec B={\vec B}_{\small S}+{\vec B}_{\small E}}
\end{gather}
\]
The magnitude for the resultant of the magnetic field to be zero, we have the condition
\[
\begin{gather}
B_{\small E}-B_{\small S}=0 \tag{I}
\end{gather}
\]
The magnitude of the magnetic field of a solenoid is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{B_S=\mu_0\frac{N}{\ell}i} \tag{II}
\end{gather}
\]
substituting expression (II) for the solenoid magnetic field in equation (I)
\[
\begin{gather}
B_{\small E}-\mu_{0}\frac{N}{\ell}i=0\\[5pt]
i=\frac{B_{\small E} \ell}{\mu_{0} N}\\[5pt]
i=\frac{\left(8\cancel{\pi}\times10^{-6}\;\mathrm{\cancel{T}}\right)\left(0,25\;\mathrm{\cancel{m}}\right)}{\left(4\pi\times 10^{-7}\;\mathrm{\frac{\cancel{T}.\cancel{m}}{A}}\right)\left(500\;\mathrm{turns}\right)}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{i=0,01\;\mathrm A=10\;\mathrm{mA}}
\end{gather}
\]
Note: The number of turns, 500, is a dimensionless quantity. "Turns" is not a
physical quantity, which is why it does not appear in the final unit of the problem.