From the top of a 100 m tall building is relesead at rest, a 900 g mass brick under the action of
gravitational force. Find:
a) The speed of the brick when touching the floor;
b) The momentum of brick by touching the floor;
c) The impulse of force acting on brick during fall.
Problem data:
- Fall height: S = 100 m;
- Mass of brick: m = 900 g;
- Initial speed of brick: v0 = 0;
- Acceleration due to gravity: g = 9.8 m/s2.
Problem diagram:
We choose a frame of reference pointing downward at the top of the building. As the brick is at rest, its
initial speed is zero, v0 = 0, its initial position is also zero,
S0 = 0, and the acceleration due to gravity is in the same direction as the frame
of reference
(Figure 1).
Solution
First, we must convert the mass of brick given in grams (g) to kilograms (kg) used in the
International System of Units (
SI)
\[
\begin{gather}
m=900\;\mathrm{\cancel g}\times\frac{1\;\mathrm{kg}}{1000\;\mathrm{\cancel g}}=0.9\;\mathrm{kg}
\end{gather}
\]
a) The brick is in free fall under the action of gravitational force, using the equation of velocity as a
function of displacement
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v^2=v_0^2+2a\Delta S}
\end{gather}
\]
the acceleration of the motion is the acceleration due to gravity,
a =
g, and substituting the
values
\[
\begin{gather}
v^2=v_0^2+2g(S-S_{0})\\[5pt]
v^2=0^2+2\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)\times(100\;\mathrm m-0)\\[5pt]
v^2=0+1960\;\mathrm{\frac{m^2}{s^2}}\\[5pt]
v=\sqrt{1960\;\mathrm{\frac{m^2}{s^2}}\;}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{v\simeq 44.3\;\mathrm{m/s}}
\end{gather}
\]
b) The momentum is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{p=mv} \tag{I}
\end{gather}
\]
substituting the mass given to the brick and the speed, calculated in the previous item
\[
\begin{gather}
p=(0.9\;\mathrm{kg})\times\left(44.3\;\mathrm{\frac{m}{s}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{p=39.9\;\mathrm{kg.m/s}}
\end{gather}
\]
c) Applying the
Impulse-Momemtum Theorem
\[
\begin{gather}
\bbox[#99CCFF,10px]
{I=\Delta p=p_{f}-p_{i}}
\end{gather}
\]
substituting the expression (I), for the initial and final values
\[
\begin{gather}
I=mv_{f}-mv_{i}
\end{gather}
\]
the final speed,
vf =
v, calculated in item (a), and the initial speed,
vi =
v0 = 0
\[
\begin{gather}
I=mv-mv_{0}\\[5pt]
I=(0.9\;\mathrm{kg})\times\left(44.3\;\mathrm{\frac{m}{s}}\right)-(0.9\;\mathrm{kg})\times 0\\[5pt]
I=40.2\;\mathrm{\frac{kg.m}{s}}-0
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{I=39.9\;\mathrm{N.s}}
\end{gather}
\]