Solved Problem on Impulse
advertisement   



From the top of a 100 m tall building is relesead at rest, a 900 g mass brick under the action of gravitational force. Find:
a) The speed of the brick when touching the floor;
b) The momentum of brick by touching the floor;
c) The impulse of force acting on brick during fall.


Problem data:
  • Fall height:    S = 100 m;
  • Mass of brick:    m = 900 g;
  • Initial speed of brick:    v0 = 0;
  • Acceleration due to gravity:    g = 9.8 m/s2.
Problem diagram:

We choose a frame of reference pointing downward at the top of the building. As the brick is at rest, its initial speed is zero, v0 = 0, its initial position is also zero, S0 = 0, and the acceleration due to gravity is in the same direction as the frame of reference (Figure 1).
Figure 1

Solution

First, we must convert the mass of brick given in grams (g) to kilograms (kg) used in the International System of Units (SI)
\[ \begin{gather} m=900\;\mathrm{\cancel g}\times\frac{1\;\mathrm{kg}}{1000\;\mathrm{\cancel g}}=0.9\;\mathrm{kg} \end{gather} \]
a) The brick is in free fall under the action of gravitational force, using the equation of velocity as a function of displacement
\[ \begin{gather} \bbox[#99CCFF,10px] {v^2=v_0^2+2a\Delta S} \end{gather} \]
the acceleration of the motion is the acceleration due to gravity, a = g, and substituting the values
\[ \begin{gather} v^2=v_0^2+2g(S-S_{0})\\[5pt] v^2=0^2+2\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)\times(100\;\mathrm m-0)\\[5pt] v^2=0+1960\;\mathrm{\frac{m^2}{s^2}}\\[5pt] v=\sqrt{1960\;\mathrm{\frac{m^2}{s^2}}\;} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {v\simeq 44.3\;\mathrm{m/s}} \end{gather} \]

b) The momentum is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {p=mv} \tag{I} \end{gather} \]
substituting the mass given to the brick and the speed, calculated in the previous item
\[ \begin{gather} p=(0.9\;\mathrm{kg})\times\left(44.3\;\mathrm{\frac{m}{s}}\right) \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {p=39.9\;\mathrm{kg.m/s}} \end{gather} \]

c) Applying the Impulse-Momemtum Theorem
\[ \begin{gather} \bbox[#99CCFF,10px] {I=\Delta p=p_{f}-p_{i}} \end{gather} \]
substituting the expression (I), for the initial and final values
\[ \begin{gather} I=mv_{f}-mv_{i} \end{gather} \]
the final speed, vf = v, calculated in item (a), and the initial speed, vi = v0 = 0
\[ \begin{gather} I=mv-mv_{0}\\[5pt] I=(0.9\;\mathrm{kg})\times\left(44.3\;\mathrm{\frac{m}{s}}\right)-(0.9\;\mathrm{kg})\times 0\\[5pt] I=40.2\;\mathrm{\frac{kg.m}{s}}-0 \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {I=39.9\;\mathrm{N.s}} \end{gather} \]
advertisement