Solved Problem on Fluid Mechanics
advertisement   



The density of seawater is equal to 1.025 g/cm3, Find:
a) The pressure exerted only by the water column at a point 50 m deep;
b) The pressure at this point, taking into account atmospheric pressure, which at sea level is 1.013×105 Pa.


Problem data:
  • Density of seawater:    ρ = 1.025 g/cm3;
  • Acceleration due to gravity:    g = 9.8 m/s2.
Problem diagram:

Figure 1

Solution

First, we must convert the water density given in grams per cubic centimeter (g/cm3) to kilograms per cubic meter (kg/m3), used in the International System of Units (SI)
\[ \begin{align} \rho= & 1.025\;\mathrm{\frac{\cancel g}{cm^3}}\times\frac{1\;\mathrm{kg}}{1000\;\mathrm{\cancel g}}\times\frac{(100\;\mathrm{cm})^3}{(1\;\mathrm m\;)^{3}}=\\ = & 1.025\;\mathrm{\frac{1}{\cancel{cm^3}}}\times\frac{\mathrm{kg}}{1\cancel{000}}\times\frac{1 000 \cancel{000}\;\mathrm{\cancel{cm^3}}}{\mathrm m^3}=\\ = & 1025\;\mathrm{kg/m^3} \end{align} \]

a) The pressure of the liquid column, pc, is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {p_{c}=\rho gh} \end{gather} \]
\[ \begin{gather} p_c=\left(1025\;\mathrm{\frac{kg}{m^{\cancel 3}}}\right)\times\left(9.8\;\mathrm{\frac{\cancel m}{s^2}}\right)\times\left(50\;\mathrm{\cancel m}\right) \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {p_c=5.023\times10^5\;\mathrm{Pa}} \end{gather} \]

b) The total pressure is given by
\[ \begin{gather} p=p_0+p_c \end{gather} \]
where p0 is atmospheric pressure at sea level
\[ \begin{gather} p=1.013\times 10^5\;\mathrm{Pa}+5.023\times 10^5\;\mathrm{Pa} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {p=6.036\times 10^5\;\mathrm{Pa}} \end{gather} \]
advertisement