The International Space Station (ISS) moves around the Earth in 1.5 hours. Find:
a) The period of rotation in minutes and seconds;
b) The frequency of rotation of the station around the Earth in Hertz.
Problem data:
- Period of rotation of the station around the Earth: T = 1.5 h;
Problem diagram:
Solution
a) Converting the rotation period, given in hours to minutes
\[
\begin{gather}
T=\left(1.5\;\mathrm{\cancel h}\right)\times\left(\frac{60\;\mathrm{min}}{1\;\mathrm{\cancel{h}}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T=90\;\mathrm{min}}
\end{gather}
\]
The period in seconds will be
\[
\begin{gather}
T=\left(1.5\;\mathrm{\cancel h}\right)\times\left(\frac{3600\;\mathrm s}{1\;\mathrm{\cancel h}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T=5400\;\mathrm{s}}
\end{gather}
\]
Note: to get the rotation period in seconds. we could also take the result obtained in
minutes and multiply by 60,
\( T=\left(90\;\mathrm{\cancel{min}}\right)\times\left(\frac{60\;\mathrm s}{1\;\mathrm{\cancel{min}}}\right)=5400\;\mathrm s \) ,
obtaining the same result.
b) To obtain the frequency, in Hertz, we use the value of the period in seconds, obtained in the previous
item, and calculate
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f=\frac{1}{T}}
\end{gather}
\]
\[
\begin{gather}
f=\frac{1}{5400\;\mathrm s}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{f=0.000185=1.85\times 10^{-4}\;\mathrm{Hz}}
\end{gather}
\]