Exercice Résolu sur les Cinématique
publicité   



La vitesse d'un corps est donnée par
\[ \begin{gather} v=t^3-4t^2+2t+5 \end{gather} \]
a) Quelle est la position du corps à t = 3 s, si initialement il est à x = 6 m?
b) Quelle est l'accélération du corps à t = 3 s?


Solution:

a) Condition initiale
\[ \begin{gather} x(0)=6\;\mathrm m \end{gather} \]
La vitesse est donnée par
\[ \begin{gather} \bbox[#99CCFF,10px] {v=\frac{dx}{dt}} \end{gather} \]
en intégrant par rapport à dt des deux côtés de l'égalité
\[ \begin{gather} \int v\;dt=\int \frac{dx}{dt}dt \end{gather} \]
en substituant v par la fonction donnée dans le problème
\[ \begin{gather} \int dx=\int v\;dt\\[5pt] \int dx=\int\left(t^3-4t^2+2t+5\right)\;dt\\[5pt] x+C_1=\frac{t^{3+1}}{3+1}-4\frac{t^{2+1}}{2+1}+2\frac{t^{1+1}}{1+1}+5\frac{t^{0+1}}{0+1}+C_2\\[5pt] x=\frac{t^4}{4}-4\frac{t^3}{3}+2\frac{t^2}{2}+5t+C_2-C_1 \end{gather} \]
C1 et C2 sont des constantes d'intégration, en écrivant C2C1 comme une nouvelle constante C
\[ \begin{gather} x=\frac{1}{4}t^4-\frac{4}{3}t^3+t^2+5t+C \end{gather} \]
En utilisant la condition initiale, pour t = 0, on a x = 6 m
\[ \begin{gather} 6=\frac{1}{4}\times 0^4-\frac{4}{3}\times 0^3+0^2+5\times 0+C\\[5pt] C=6\;\mathrm m \end{gather} \]
l'équation pour la position en fonction du temps est donnée par
\[ \begin{gather} x(t)=\frac{1}{4}t^4-\frac{4}{3}t^3+t^2+5t+6 \end{gather} \]
à t = 3 s, la position sera
\[ \begin{gather} x(3)=\frac{1}{4}\times 3^4-\frac{4}{3}\times3^3+3^2+5\times 3+6\\[5pt] x(3)=\frac{1}{4}\times 81-\frac{4}{3}\times27+9+15+6 \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {x=14,25\;\mathrm m} \end{gather} \]


b) L'accélération est donnée par
\[ \begin{gather} \bbox[#99CCFF,10px] {a=\frac{dv}{dt}} \end{gather} \]
en substituant v par la fonction donnée dans le problème
\[ \begin{gather} a=\frac{d\left(t^3-4t^2+2t+5\right)}{dt}\\[5pt] a=3t^{3-1}-2\times 4t^{2-1}+1\times 2t^{1-1}-0\\[5pt] a=3t^2-8t^1+2t^0 \end{gather} \]
l'équation pour l'accélération en fonction du temps est donnée par
\[ \begin{gather} a(t)=3t^2-8t+2 \end{gather} \]
à t = 3 s, l'accélération sera
\[ \begin{gather} a(3)=3\times 3^2-8\times 3+2 \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {a=5\;\mathrm{m/s}^2} \end{gather} \]
publicité