Se as funções Ψ
1(
x,
t), Ψ
2(
x,
t) e
Ψ
3(
x,
t) são soluções da
Equação de Schrödinger para um potencial
V(
x,
t), mostre que a combinação linear
Ψ(
x,
t) =
c1Ψ
1(x, t) +
c2Ψ
2(x, t) +
c3Ψ
3(x, t)
também é uma solução desta equação.
Solução:
Aplicando a
Equação de Schrödinger
\[
\begin{gather}
\bbox[#99CCFF,10px]
{-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)=i\hbar\frac{\partial\Psi(x,t)}{\partial t}}
\end{gather}
\]
queremos mostrar que a função dada Ψ(
x,
t) é solução da
Equação de Schrödinger,
escrevendo na seguinte forma
\[
\begin{gather}
-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)-i\hbar\frac{\partial\Psi(x,t)}{\partial t}=0 \tag{I}
\end{gather}
\]
substituindo a função Ψ(
x,
t) dada no problema na equação (I)
\[
\begin{align}
& -{\frac{\hbar^2}{2m}}\frac{\partial^2[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)+c_3\Psi_3(x,t)]}{\partial x^2}+\qquad\qquad\qquad\\
&\qquad +V(x,t)[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)+c_3\Psi_3(x,t)]-\\
&\qquad -i\hbar\frac{\partial[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)+c_3\Psi_3(x,t)]}{\partial t}=0
\\[10pt]
& -{\frac{\hbar^2}{2m}}\left[c_1\frac{\Psi_1(x,t)}{\partial x^2}+c_2\frac{\Psi_2(x,t)}{\partial x^2}+c_3\frac{\Psi_3(x,t)}{\partial x^2}\right]+\qquad\quad\qquad\\
&\qquad +c_1\Psi_1(x,t)V(x,t)+c_2\Psi_2(x,t)V(x,t)+c_3\Psi_3(x,t)V(x,t)+\\
&\qquad -c_1 i\hbar\frac{\partial \Psi_1(x,t)}{\partial t}-c_2 i\hbar\frac{\partial\Psi_2(x,t)}{\partial t}-c_3 i\hbar\frac{\partial \Psi_3(x,t)}{\partial t}=0
\\[10pt]
& c_1\;\left[-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_1(x,t)}{\partial x^2}+V(x,t)\Psi_1(x,t)-i\hbar\frac{\partial \Psi_1(x,t)}{\partial t}\right]+\qquad\quad\\
&\qquad +c_2\;\left[-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_2(x,t)}{\partial x^2}+V(x,t)\Psi_2(x,t)-i\hbar\frac{\partial \Psi_2(x,t)}{\partial t}\right]+\quad \tag{II} \\
&\qquad +c_3\;\left[-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_3(x,t)}{\partial x^2}+V(x,t)\Psi_3(x,t)-i\hbar\frac{\partial \Psi_3(x,t)}{\partial t}\right]=0
\end{align}
\]
Como o problema nos diz que as funções
Ψ
1(
x,
t), Ψ
2(
x,
t) e
Ψ
3(
x,
t) são soluções da
Equação de Schrödinger, isto quer dizer que
\[
\begin{gather}
-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_1(x,t)}{\partial x^2}+V(x,t)\Psi_1(x,t)-i\hbar\frac{\partial\Psi_1(x,t)}{\partial t}=0
\\[10pt]
-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_2(x,t)}{\partial x^2}+V(x,t)\Psi_2(x,t)-i\hbar\frac{\partial \Psi_2(x,t)}{\partial t}=0
\\[10pt]
-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_3(x,t)}{\partial x^2}+V(x,t)\Psi_3(x,t)-i\hbar\frac{\partial\Psi_3(x,t)}{\partial t}=0
\end{gather}
\]
substituindo estes valores na equação (II)
\[
\begin{gather}
c_1\times 0+c_2\times 0+c_3\times 0=0
\end{gather}
\]
esta igualdade será verificada para quaisquer valores de
c1,
c2 e
c3, isto torna equação (I) verdadeira. Portanto,
Ψ(x, t) é solução da Equação de Schrödinger
.