Ejercicio Resuelto sobre Ecuación de Schrödinger
publicidad   



Si las funciones Ψ1(x, t), Ψ2(x, t) y Ψ3(x, t) son soluciones de la Ecuación de Schrödinger para un potencial V(x, t), demuestre que la combinación lineal Ψ(x, t) = c1Ψ1(x, t) + c2Ψ2(x, t) + c3Ψ3(x, t) también es una solución de esta ecuación.


Solución:

Aplicando la Ecuación de Schrödinger
\[ \begin{gather} \bbox[#99CCFF,10px] {-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)=i\hbar\frac{\partial\Psi(x,t)}{\partial t}} \end{gather} \]
queremos demostrar que la función dada Ψ(x, t) es solución de la Ecuación de Schrödinger, escribiéndola de la siguiente forma
\[ \begin{gather} -{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)-i\hbar\frac{\partial\Psi(x,t)}{\partial t}=0 \tag{I} \end{gather} \]
sustituyendo la función Ψ(x, t) dada en el problema en la ecuación (I)
\[ \begin{align} & -{\frac{\hbar^2}{2m}}\frac{\partial^2[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)+c_3\Psi_3(x,t)]}{\partial x^2}+\qquad\qquad\qquad\\ &\qquad +V(x,t)[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)+c_3\Psi_3(x,t)]-\\ &\qquad -i\hbar\frac{\partial[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)+c_3\Psi_3(x,t)]}{\partial t}=0 \\[10pt] & -{\frac{\hbar^2}{2m}}\left[c_1\frac{\Psi_1(x,t)}{\partial x^2}+c_2\frac{\Psi_2(x,t)}{\partial x^2}+c_3\frac{\Psi_3(x,t)}{\partial x^2}\right]+\qquad\quad\qquad\\ &\qquad +c_1\Psi_1(x,t)V(x,t)+c_2\Psi_2(x,t)V(x,t)+c_3\Psi_3(x,t)V(x,t)+\\ &\qquad -c_1 i\hbar\frac{\partial \Psi_1(x,t)}{\partial t}-c_2 i\hbar\frac{\partial\Psi_2(x,t)}{\partial t}-c_3 i\hbar\frac{\partial \Psi_3(x,t)}{\partial t}=0 \\[10pt] & c_1\;\left[-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_1(x,t)}{\partial x^2}+V(x,t)\Psi_1(x,t)-i\hbar\frac{\partial \Psi_1(x,t)}{\partial t}\right]+\qquad\quad\\ &\qquad +c_2\;\left[-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_2(x,t)}{\partial x^2}+V(x,t)\Psi_2(x,t)-i\hbar\frac{\partial \Psi_2(x,t)}{\partial t}\right]+\quad \tag{II} \\ &\qquad +c_3\;\left[-{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_3(x,t)}{\partial x^2}+V(x,t)\Psi_3(x,t)-i\hbar\frac{\partial \Psi_3(x,t)}{\partial t}\right]=0 \end{align} \]
Como el problema nos indica que las funciones Ψ1(x, t), Ψ2(x, t) y Ψ3(x, t) son soluciones de la Ecuación de Schrödinger, esto significa que
\[ \begin{gather} -{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_1(x,t)}{\partial x^2}+V(x,t)\Psi_1(x,t)-i\hbar\frac{\partial\Psi_1(x,t)}{\partial t}=0 \\[10pt] -{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_2(x,t)}{\partial x^2}+V(x,t)\Psi_2(x,t)-i\hbar\frac{\partial \Psi_2(x,t)}{\partial t}=0 \\[10pt] -{\frac{\hbar^2}{2m}}\frac{\partial^2\Psi_3(x,t)}{\partial x^2}+V(x,t)\Psi_3(x,t)-i\hbar\frac{\partial\Psi_3(x,t)}{\partial t}=0 \end{gather} \]
sustituyendo estos valores en la ecuación (II)
\[ \begin{gather} c_1\times 0+c_2\times 0+c_3\times 0=0 \end{gather} \]
esta igualdad se verificará para cualquier valor de c1, c2 y c3, lo que hace que la ecuación (I) sea verdadera. Por lo tanto, Ψ(x, t) es solución de la Ecuación de Schrödinger .
publicidad