Solved Problem on Lagrange Equation
advertisement   



A body of mass m is attached to the end of a spring with constant k, resting on a horizontal frictionless surface. The other end of the spring is fixed at a wall. The body is moved away from the equilibrium position, and the body is released. Determine the equation of motion of the body.



Problem data:
  • Mass of body:    m;
  • Spring constant:    k.
Solution

The Lagrangian of a system is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {L=T-V} \tag{I} \end{gather} \]
The kinetic energy is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {T=\frac{1}{2}mv^{2}} \end{gather} \]
\[ \begin{gather} T=\frac{1}{2}m{\dot{x}}^{2} \tag{II} \end{gather} \]
The potential energy of the spring is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {U=\frac{1}{2}kx^{2}} \tag{III} \end{gather} \]
Substituting expressions (II) and (III) into expression (I)
\[ \begin{gather} L=\frac{1}{2}m{\dot{x}}^{2}-\frac{1}{2}kx^{2} \end{gather} \]
The Lagrange Equation is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\frac{d}{dt}\left(\frac{\partial L}{\partial{\dot{q}}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0} \tag{IV} \end{gather} \]
we have one variable, j = 1, letting \( q_{1}=x \) and \( \dot{q}_{1}=\dot{x} \).
\[ \begin{gather} \frac{d}{dt}\left(\frac{\partial L}{\partial\dot{x}}\right)-\frac{\partial L}{\partial x}=0 \tag{V} \end{gather} \]
  • Differentiation of   \( \displaystyle \frac{\partial L}{\partial x} \)
\[ \begin{gather} \frac{\partial L}{\partial x}=\frac{\partial }{\partial x}\left[\frac{1}{2}m{\dot{x}}^{2}-\frac{1}{2}kx^{2}\right]\\[5pt] \frac{\partial L}{\partial x}=\underbrace{\frac{\partial }{\partial x}\left[\frac{1}{2}m{\dot{x}}^{2}\right]}_{0}-\frac{\partial }{\partial x}\left[\frac{1}{2}kx^{2}\right]\\[5pt] \frac{\partial L}{\partial x}=-{\frac{2}{2}kx}\\[5pt] \frac{\partial L}{\partial x}=-kx \tag{VI} \end{gather} \]
in the first term, variable x does not appear, and the first term depends on \( \dot{x} \).
  • Differentiation of   \( \displaystyle \frac{\partial L}{\partial \dot{x}} \)
\[ \begin{gather} \frac{\partial L}{\partial \dot{x}}=\frac{\partial}{\partial\dot{x}}\left[\frac{1}{2}m{\dot{x}}^{2}-\frac{1}{2}kx^{2}\right]\\[5pt] \frac{\partial L}{\partial \dot{x}}=\frac{\partial }{\partial\dot{x}}\left[\frac{1}{2}m{\dot{x}}^{2}\right]-\underbrace{\frac{\partial}{\partial \dot{x}}\left[\frac{1}{2}kx^{2}\right]}_{0}\\[5pt] \frac{\partial L}{\partial \dot{x}}=\frac{2}{2}m\dot{x}\\[5pt] \frac{\partial L}{\partial\dot{x}}=m\dot{x} \tag{VII} \end{gather} \]
in the second term, variable \( \dot{x} \) does not appear, and the second term depends on x.
  • Differentiation of   \( \displaystyle \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) \)
Differentiating expression (VII) with respect to time
\[ \begin{gather} \frac{d}{dt}\left(\frac{\partial L}{\partial\dot{x}}\right)=\frac{d}{dt}\left(m\dot{x}\right)\\[5pt] \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{z}}\right)=m\ddot{x} \tag{VIII} \end{gather} \]
Substituting expressions (VI) and (VIII) into expression (V)
\[ \begin{gather} m\ddot{x}-\left(-kx\right)=0\\[5pt] m\ddot{x}+kx=0 \end{gather} \]
dividing both sides of the equation by the mass m
\[ \begin{gather} \ddot{x}+\frac{k}{m}x=0 \end{gather} \]
setting   \( \omega_{0}^{2}\equiv \frac{k}{m} \)
\[ \begin{gather} \ddot{x}+\omega_{0}^{2}x=0 \end{gather} \]

Solution of   \( \ddot{x}+\omega_{0}^{2}x=0 \)

The solution to this type of equation is found by substituting
\[ \begin{array}{l} x=\operatorname{e}^{\lambda t}\\[10pt] \dot{x}=\lambda\operatorname{e}^{\lambda t}\\[10pt] \ddot{x}=\lambda^{2}\operatorname{e}^{\lambda t} \end{array} \]
substituting these values into the differential equation
\[ \begin{gather} \lambda^{2}\operatorname{e}^{\lambda t}+\omega_{0}^{2}\operatorname{e}^{\lambda t}=0\\[5pt] \operatorname{e}^{\lambda t}\left(\lambda^{2}+\omega_{0}^{2}\right)=0\\[5pt] \lambda^{2}+\omega_{0}^{2}=\frac{0}{\operatorname{e}^{\lambda t}}\\[5pt] \lambda^{2}+\omega_{0}^{2}=0\\[5pt] \end{gather} \]
this is the Characteristic Equation that has a solution
\[ \begin{gather} \lambda^{2}=-\omega_{0}^{2}\\[5pt] \lambda =\sqrt{-\omega_{0}^{2}}\\[5pt] \lambda_{1,2}=\pm \omega_{0}\mathrm{i} \end{gather} \]
where   \( \mathrm{i}=\sqrt{-1} \).
The solution to the differential equation will be
\[ \begin{gather} x=C_{1}\operatorname{e}^{\lambda_{1}t}+C_{2}\operatorname{e}^{\lambda_{2}t}\\[5pt] x=C_{1}\operatorname{e}^{\omega_{0}\text{i}t}+C_{2}\operatorname{e}^{-\omega_{0}\mathrm{i}t} \end{gather} \]
where C1 and C2 are constants of integration, using Euler's Formula   \( \operatorname{e}^{i\theta }=\cos \theta+\text{i}\sin \theta \)
\[ \begin{gather} x=C_{1}\left(\cos \omega_{0}t+\mathrm{i}\sin \omega_{0}t\right)+C_{2}\left(\cos\omega_{0}t-\mathrm{i}\sin \omega_{0}t\right)\\[5pt] x=C_{1}\cos\omega_{0}t+\mathrm{i}C_{1}\sin \omega_{0}t+C_{2}\cos\omega_{0}t-\mathrm{i}C_{2}\sin \omega_{0}t\\[5pt] x=\left(C_{1}+C_{2}\right)\cos \omega_{0}t+\mathrm{i}\left(C_{1}-C_{2}\right)\sin \omega_{0}t \end{gather} \]
defining two new constants α and β in terms of C1 and C2
\[ \begin{gather} \alpha \equiv C_{1}+C_{2}\\[5pt] \text{e}\\[5pt] \beta \equiv \mathrm{i}(C_{1}-C_{2}) \end{gather} \]
\[ \begin{gather} x=\alpha \cos \omega_{0}t+\beta \sin \omega_{0}t \end{gather} \]
multiplying and dividing this expression by \( \sqrt{\alpha^{2}+\beta^{2}} \)
\[ \begin{gather} x=\left(\alpha \cos \omega_{0}t+\beta\sin \omega_{0}t\right)\frac{\sqrt{\alpha^{2}+\beta^{2}\;}}{\sqrt{\alpha^{2}+\beta^{2}\;}}\\[5pt] x=\sqrt{\alpha^{2}+\beta^{2}\;}\left(\frac{\alpha }{\sqrt{\alpha^{2}+\beta^{2}}}\cos \omega_{0}t+\frac{\beta }{\sqrt{\alpha^{2}+\beta^{2}\;}}\sin \omega_{0}t\right) \end{gather} \]
setting
\[ \begin{gather} A\equiv \sqrt{\alpha^{2}+\beta{2}\;}\\[10pt] \cos\varphi \equiv \frac{\alpha }{\sqrt{\alpha^{2}+\beta^{2}\;}}\\[10pt] \sin \varphi \equiv \frac{\beta }{\sqrt{\alpha^{2}+\beta^{2}\;}} \end{gather} \]
\[ \begin{gather} x=A(\cos \varphi \cos \omega_{0}t+\sin \varphi\sin \omega_{0}t) \end{gather} \]
From the trigonometric identity   \( \cos(a-b)=\cos a\cos b+\sin a\sin b \)
\[ \cos(a-b)=\cos a\cos b+\sin a\sin b \]

\[ \begin{gather} \bbox[#FFCCCC,10px] {x=A\cos (\omega_{0}t-\varphi )} \end{gather} \]
advertisement