Solved Problem on Contours
advertisement   



\( \mathsf{e)}\;\; \displaystyle z=t+i\sqrt{1-t^{2}\;}\qquad ,\qquad -1\leqslant t\leqslant 1 \)


The function z is a parametric function of the type
\[ \bbox[#99CCFF,10px] {z(t)=x(t)+iy(t)} \]
Identifying the functions x(t) and y(t)
\[ \begin{align} & x(t)=t \tag{I}\\[10pt] & y(t)=\sqrt{1-t^{2}\;} \tag{II} \end{align} \]
substituting expression (I) into expression (II)
\[ y=\sqrt{1-x^{2}\;} \]
squaring both sides of equation
\[ \begin{gather} y^{2}=\left(\sqrt{1-x^{2}\;}\right)^{2}\\ y^{2}=1-x^{2}\\ y^{2}+x^{2}=1 \end{gather} \]
For t = −1, we have x = −1 and   \( y=\sqrt{1-(-1)^{2}\;}=0 \), for t = 0, we have x = 0 and   \( y=\sqrt{1-0^{2}\;}=1 \), for t = 1, we have x = 1 and   \( y=\sqrt{1-1^{2}\;}=0 \).
Graph 1

The function z(t) represents a semicircle above the x-axis and oriented from −1 to 1, (Graph 1).
advertisement