Solved Problem on Contours
\( \mathsf{a)}\;\; \displaystyle z=3t+it^{2}\qquad ,\qquad -\infty \lt t \lt \infty \)
The function
z is a parametric function of the type
\[ \bbox[#99CCFF,10px]
{z(t)=x(t)+iy(t)}
\]
Identifying the functions
x(
t) and
y(
t)
\[
\begin{align}
& x(t)=3t \tag{I}\\[10pt]
& y(t)=t^{2} \tag{II}
\end{align}
\]
using expression (I)
\[
\begin{gather}
t=\frac{x}{3} \tag{III}
\end{gather}
\]
substituting expression (III) into expression (II)
\[
\begin{gather}
y=\left(\frac{x}{3}\right)^{2}\\
y=\frac{x^{2}}{9}
\end{gather}
\]
For
t = −1, we have
x = 3×(−1) = −3 and
y = (−1)
2 = 1, for
t = 0, we have
x = 0 and
y = 0
2 = 0,
for
t = 1, we have
x = 3×1 = 3 and
y = 1
2 = 1, and so on.
Graph 1
The function
z(
t) represents a
parabola
oriented from −∞ to +∞, (Graph 1).