f)
\( f(z)=y-x^{2} \), along the path formed by two segments, the first segment going
from the origin to the point (0, 1), and the second segment going from the point (0, 1) to the point (2, 1).
The curve is formed by two segments γ
1 and γ
2, which must be parameterized
separately.
The parameterization of a line is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{z(t)=z_{1}+t(z_{2}-z_{1})}
\end{gather}
\]
- Parameterization of the γ1 curve (Figure 1)
Start and end points of the curve,
\( z_{1}=0+0i \)
and
\( z_{2}=0+i \)
\[
\begin{gather}
z_{\gamma_{1}}(t)=(0+0i)+t[(0+i)-(0+0i)]\\[5pt]
\qquad \qquad \qquad \qquad z_{\gamma _{1}}(t)=it\qquad ,\qquad \ 0\leqslant t\leqslant 1 \tag{I}
\end{gather}
\]
- Derivative of zγ1(t) = it
\[
\begin{gather}
z'_{\gamma 1}(t)=\frac{dz_{\gamma 1}}{dt}=i \tag{II}
\end{gather}
\]
The contour integral is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\int f(z)\;dz=\int f(z(t))z'(t)\;dt}
\end{gather}
\]
\[
\begin{gather}
f(z)=y-x^{2} \tag{III}
\end{gather}
\]
Integration over the γ
1 curve
\[
\begin{gather}
I_{1}=\int_{\gamma 1}f(z_{\gamma 1}(t))z'_{\gamma 1}(t)\;dt \tag{IV}
\end{gather}
\]
using expression (I) we have
f(
zγ1(
t))
\[
\begin{gather}
z_{\gamma 1}(t)=\underbrace{\ 0\ }_{x(t)}+\underbrace{\ t\ }_{y(t)}i \tag{V}
\end{gather}
\]
substituting the values of
x(
t) and
y(
t) of expression (V) into expression (III)
\[
\begin{gather}
f(z_{\gamma 1}(t))=t-0^{2}\\
f(z_{\gamma1}(t))=t \tag{VI}
\end{gather}
\]
substituting expressions (II) and (VI) into expression (IV)
\[
\begin{align}
I_{1} &=\int_{0}^{1}(t)(i)\;dt=\int_{0}^{1}ti\;dt=\\[5pt]
&=i\int_{0}^{1}t\;dt=i\;\left(\left.\frac{t^{2}}{2}\;\right|_{0}^{1}\right)=\\[5pt]
&=i\left(\frac{1}{2}\right)=\frac{1}{2}i \tag{VII}
\end{align}
\]
- Parameterization of the γ2 curve (Figure 2)
Start and end points of the curve,
\( z_{2}=0+i \)
and
\( z_{3}=2+i \)
\[
\begin{gather}
z_{\gamma_{2}}(t)=(0+i)+t[(2+1i)-(0+i)]\\[5pt]
z_{\gamma_{2}}(t)=i+t[2+i-i]\\[5pt]
\qquad \qquad \qquad \qquad z_{\gamma_{2}}(t)=2t+i\qquad ,\qquad 0\leqslant t\leqslant 1 \tag{VIII}
\end{gather}
\]
- Derivative of zγ2(t) = 2t+i
\[
\begin{gather}
z'_{\gamma 2}(t)=\frac{dz}{dt}=2 \tag{IX}
\end{gather}
\]
Integration over the γ
2 curve
\[
\begin{gather}
I_{2}=\int_{\gamma 2}f(z_{\gamma 2}(t))z'_{\gamma 2}(t)\;dt \tag{X}
\end{gather}
\]
using expression (VIII) we have
f(
zγ2(
t))
\[
\begin{gather}
z_{\gamma 2}(t)=\underbrace{\ 2t\ }_{x(t)}+\underbrace{\ 1\ }_{y(t)}i \tag{XI}
\end{gather}
\]
substituting the values of
x(
t) and
y(
t) from expression (XI) into
expression (III)
\[
\begin{gather}
f(z_{\gamma 2}(t))=1-(2t)^{2}\\
f(z_{\gamma 2}(t))=1-4t^{2} \tag{XII}
\end{gather}
\]
substituting expressions (IX) and (XII) into expression (X)
\[
\begin{align}
I_{2} &=\int_{0}^{1}(1-4t^{2})\times(2)\;dt=\int_{0}^{1}(2-8t^{2})\;dt= \\[5pt]
&=2\int_{0}^{1}\;dt-8\int_{0}^{1}t^{2}\;dt=2\;\left(\left.t\;\right|_{0}^{1}\right)-8\;\left(\left.\frac{t^{3}}{3}\;\right|_{0}^{1}\right)=\\[5pt]
&=2\times(1)-8\times\left(\frac{1}{3}\right)=2-\frac{8}{3}=\frac{6-8}{3}=-{\frac{2}{3}} \tag{XIII}
\end{align}
\]
The final result will be given by the sum of the integrals over the two segments (VII) and (XIII)
\[
\begin{gather}
I=I_{1}+I_{2}\\[5pt]
I=\frac{1}{2}i-\frac{2}{3}\\[5pt]
I=\frac{3i-4}{6}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\int_{0}^{2+i}f(z)\;dz=\frac{-4+3i}{6}}
\end{gather}
\]