a)
\( \displaystyle \oint_{|z+\mathrm{i}|=1}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz \)
O caminho é dado pela circunferência de raio 1 com centro no ponto (0, −1), percorrida no sentido
anti-horário (Figura 1).
A
Fórmula Integral de Cauchy na forma geral é dada por
\[
\begin{gather}
\bbox[#99CCFF,10px]
{f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I}
\end{gather}
\]
Identificando os termos da integral
\[
\begin{gather}
\frac{{
\bbox[#FFCC66,2px]
{n}
}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{
\bbox[#FFFF66,2px]
{f(z)}
}{\left(z-
\bbox[#FFD9CC,2px]
{z_{0}}
\right)^{
\bbox[#FFCC66,2px]
{n}
+1}}\;dz=\oint_{{|z+\mathrm{i}|=1}}\frac{
\bbox[#FFFF66,2px]
{{\operatorname{sen}z}}
}{[z-(
\bbox[#FFD9CC,2px]
{{-\mathrm{i}}}
)]^{
\bbox[#FFCC66,2px]
{2}
+1}}\;dz
\end{gather}
\]
o ponto
\( z+\mathrm{i}=0\Rightarrow z=-\mathrm{i} \)
está no interior da região determinada pelo contorno
C, ele será usado no cálculo da integral,
temos
\( f(z)=\operatorname{sen}z \),
z0 = −i e
n = 2, escrevendo a expressão (I)
\[
\begin{gather}
\oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt]
\oint_{|z+\mathrm{i}|=1}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\frac{2\pi\mathrm{i}}{2!}\;f^{(2)}(-\mathrm{i})
\end{gather}
\]
Cálculo da derivada segunda de
\( \displaystyle f(z)=\operatorname{sen}z \)
\[
\begin{gather}
\frac{df}{dz}=\cos z\\[10pt]
\frac{d^{2}f}{dz^{2}}=-\operatorname{sen}z
\end{gather}
\]
\[
\begin{gather}
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\frac{2\pi\mathrm{i}}{2.1}\;[-\operatorname{sen}(-\mathrm{i})]
\end{gather}
\]
como seno é uma função ímpar
\( \operatorname{sen}(-\theta)=-\operatorname{sen}(\theta) \)
\[
\begin{gather}
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\;[-(-\operatorname{sen}\;\mathrm{i})]\\[5pt]
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\;\operatorname{sen}\;\mathrm{i}
\end{gather}
\]
Lembrando da forma exponencial da função seno
\( \displaystyle \operatorname{sen}z=\frac{\operatorname{e}^{\mathrm{i}z}-\operatorname{e}^{-\mathrm{i}z}}{2\mathrm{i}} \)
\[
\begin{gather}
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\;\left(\frac{\operatorname{e}^{\mathrm{i}.\mathrm{i}}-\operatorname{e}^{-\mathrm{i}.\mathrm{i}}}{2\mathrm{i}}\right)\\[5pt]
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(\frac{\operatorname{e}^{\mathrm{i}^{2}}-\operatorname{e}^{-\mathrm{i}^{2}}}{2}\right)\\[5pt]
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(\frac{\operatorname{e}^{-1}-\operatorname{e}^{-(-1)}}{2}\right)\\[5pt]
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(\frac{\operatorname{e}^{-1}-\operatorname{e}^{1}}{2}\right)\\[5pt]
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=\pi\;\left(-{\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}}\right)\\[5pt]
\oint_{{|z+\mathrm{i}|=1}}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=-\pi\;\left(\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}\right)
\end{gather}
\]
Lembrando da forma exponencial da função seno hiperbólico
\( \displaystyle \operatorname{senh}z=\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2} \)
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\oint_{|z+\mathrm{i}|=1}\frac{\operatorname{sen}z}{(z+\mathrm{i})^{3}}\;dz=-\pi\;\operatorname{senh}1}
\end{gather}
\]
Observação: Podemos calcular o valor numérico usando e = 2,71818 e π = 3,14159
\[
\begin{split}
-\pi\;\left(\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}\right) &\Rightarrow-3,14159.\;\left(\frac{2,71818^{1}-2,71818^{-1}}{2}\right)\Rightarrow\\[5pt]
&\Rightarrow-\frac{3,14159}{2}.\;\left(2,71818-\frac{1}{2,71818}\right)\Rightarrow\\[5pt]
&\Rightarrow-1,57079.\;\left(\frac{2,71818.2,71818-1}{2,71818}\right)\Rightarrow\\[5pt]
&\Rightarrow-1,57079.\;\left(\frac{7,38850-1}{2,71818}\right)\Rightarrow\\[5pt]
&\Rightarrow-1,57079.\;\left(\frac{6,38850}{2,71818}\right)\Rightarrow\\[5pt]
&\Rightarrow-1,57079.\;\left(\frac{6,38850}{2,71818}\right)\Rightarrow\\[5pt]
&\Rightarrow-1,57079.\;\left(1,71817\right)\Rightarrow-2,69888
\end{split}
\]