Solved Problem on Kinematics
advertisement   



A particle is on a plane xy, initially at rest in the position x0 on the positive x-axis. It begins to move with constant velocities vx, in the direction of origin, and vy in the direction of the positive y-axis. Determine after how long the particle will be at the minimum distance of the origin and, what is this minimum distance.


Problem data:
  • Initial position of the particle:    x0;
  • Speed ​​of the particle in direction x:    vx;
  • Speed ​​of the particle in direction y:    vy.
Problem diagram:

As the components of the speed are constants the trajectory will be a straight line (Figure 1-A).

Figure 1

Along the trajectory, the particle passes successively by points P0, P1, P2, PP, P3, and so on. The point of minimum distance to the origin will be the point PP, where the line of this point to the origin is perpendicular to the trajectory (Figure 1-B).

Solution

We have g the distance from the origin to the point of less distance, segment \( \overline{OP_{P}} \), and h the distance from the starting point to the point of less distance, segment \( \overline{x_{0}P_{P}} \). Applying the Pythagorean Theorem to the triangle ΔOPPx0 (in red in Figure 2)
\[ \begin{gather} x_{0}^{2}=g^{2}+h^{2}\\ h^{2}=x_{0}^{2}-g^{2} \tag{I} \end{gather} \]
Figure 2

The point PP has coordinates (x1, y1), the distance traveled by the particle along the x-axis, from x0 to x1, will be
\[ \begin{gather} x_{0}-x_{1}=v_{x}t \tag{II} \end{gather} \]
The distance traveled by the particle along the y-axis, from O to y1, will be
\[ y_{1}-0=v_{y}t \]
Applying the Pythagorean Theorem to the triangle Δx1PPx0 (in blue in Figure 3)
\[ \begin{gather} h^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \tag{III} \end{gather} \]
Figure 3

The distance from the origin to point x1, segment \( \overline{Ox_{1}} \), will be obtained from the expression (II)
\[ x_{1}=x_{0}-v_{x}t \]
Applying the Pythagorean Theorem to the triangle ΔOPPx1 (in blue in Figure 4)
\[ \begin{gather} g^{2}=\left(x_{0}-v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \tag{IV} \end{gather} \]
Figure 4

Equations (I), (III), and (IV) can be written as a system of three equations to three variables (g, h, and t)
\[ \left\{ \begin{array}{l} \;h^{2}=x_{0}^{2}-g^{2}\\ \;h^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\ \;g^{2}=\left(x_{0}-v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \end{array} \right. \]
substituting the first equation on the second in the system
\[ \begin{gather} x_{0}^{2}-g^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \tag{V} \end{gather} \]
substituting the third equation of the system in the expression (V), we obtain the time interval needed to reach the minimum distance
\[ \begin{gather} x_{0}^{2}-\left[\left(x_{0}-v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\right]=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt] x_{0}^{2}-\left(x_{0}-v_{x}t\right)^{2}-\left(v_{y}t\right)^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt] x_{0}^{2}-\left[x_{0}^{2}-2x_{0}v_{x}t+\left(v_{x}t\right)^{2}\right]=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt] x_{0}^{2}-x_{0}^{2}+2x_{0}v_{x}t-\left(v_{x}t\right)^{2}=\left(v_{x}t\right)^{2}+2\left(v_{y}t\right)^{2}\\[5pt] 2x_{0}v_{x}t=\left(v_{x}t\right)^{2}+\left(v_{x}t\right)^{2}+2\left(v_{y}t\right)^{2}\\[5pt] 2x_{0}v_{x}t=2\left(v_{x}t\right)^{2}+2\left(v_{y}t\right)^{2}\\[5pt] x_{0}v_{x}t=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt] v_{x}^{2}t^{2}+v_{y}^{2}t^{2}=x_{0}v_{x}t\\[5pt] t^{2}\left(v_{x}^{2}+v_{y}^{2}\right)=x_{0}v_{x}t\\[5pt] t\left(v_{x}^{2}+v_{y}^{2}\right)=x_{0}v_{x} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {t=\frac{x_{0}v_{x}}{v_{x}^{2}+v_{y}^{2}}} \]
From expression (V), we get a minimum distance
\[ \begin{gather} g^{2}=x_{0}^{2}-v_{x}^{2}t^{2}-v_{y}^{2}t^{2}\\ g^{2}=x_{0}^{2}-t^{2}\left(v_{x}^{2}+v_{y}^{2}\right) \end{gather} \]
substituting the time value found above
\[ \begin{gather} g^{2}=x_{0}^{2}-\left(\frac{x_{0}v_{x}}{v_{x}^{2}+v_{y}^{2}}\right)^{2}\left(v_{x}^{2}+v_{y}^{2}\right)\\[5pt] g^{2}=x_{0}^{2}-\frac{x_{0}^{2}v_{x}^{2}}{\left(v_{x}^{2}+v_{y}^{2}\right)^{2}}\left(v_{x}^{2}+v_{y}^{2}\right)\\[5pt] g^{2}=x_{0}^{2}-\frac{x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt] g^{2}=\frac{x_{0}^{2}\left(v_{x}^{2}+v_{y}^{2}\right)-x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt] g^{2}=\frac{x_{0}^{2}v_{x}^{2}+x_{0}^{2}v_{y}^{2}-x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt] g^{2}=\frac{x_{0}^{2}v_{x}^{2}+x_{0}^{2}v_{y}^{2}-x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt] g^{2}=\frac{x_{0}^{2}v_{y}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt] g=\sqrt{\frac{x_{0}^{2}v_{y}^{2}}{v_{x}^{2}+v_{y}^{2}}\;} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {g=\frac{x_{0}v_{y}}{\sqrt{v_{x}^{2}+v_{y}^{2}}\;}} \]
advertisement