A particle is on a plane
xy, initially at rest in the position
x0 on the positive
x-axis. It begins to move with constant velocities
vx, in the direction of origin,
and
vy in the direction of the positive
y-axis. Determine after how long the
particle will be at the minimum distance of the origin and, what is this minimum distance.
Problem data:
- Initial position of the particle: x0;
- Speed of the particle in direction x: vx;
- Speed of the particle in direction y: vy.
Problem diagram:
As the components of the speed are constants the trajectory will be a straight line (Figure 1-A).
Along the trajectory, the particle passes successively by points
P0,
P1,
P2,
PP,
P3, and so on. The point of minimum distance
to the origin will be the point PP, where the line of this point to the origin is perpendicular to the
trajectory (Figure 1-B).
Solution
We have
g the distance from the origin to the point of less distance, segment
\( \overline{OP_{P}} \),
and
h the distance from the starting point to the point of less distance, segment
\( \overline{x_{0}P_{P}} \).
Applying the
Pythagorean Theorem to the triangle Δ
OPPx0
(in red in Figure 2)
\[
\begin{gather}
x_{0}^{2}=g^{2}+h^{2}\\
h^{2}=x_{0}^{2}-g^{2} \tag{I}
\end{gather}
\]
The point
PP has coordinates (
x1,
y1), the distance
traveled by the particle along the
x-axis, from
x0 to
x1, will be
\[
\begin{gather}
x_{0}-x_{1}=v_{x}t \tag{II}
\end{gather}
\]
The distance traveled by the particle along the
y-axis, from
O to
y1,
will be
\[
y_{1}-0=v_{y}t
\]
Applying the
Pythagorean Theorem to the triangle
Δ
x1PPx0 (in blue in Figure 3)
\[
\begin{gather}
h^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \tag{III}
\end{gather}
\]
The distance from the origin to point
x1, segment
\( \overline{Ox_{1}} \),
will be obtained from the expression (II)
\[
x_{1}=x_{0}-v_{x}t
\]
Applying the
Pythagorean Theorem to the triangle Δ
OPPx1
(in blue in Figure 4)
\[
\begin{gather}
g^{2}=\left(x_{0}-v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \tag{IV}
\end{gather}
\]
Equations (I), (III), and (IV) can be written as a system of three equations to three variables (
g,
h, and
t)
\[
\left\{
\begin{array}{l}
\;h^{2}=x_{0}^{2}-g^{2}\\
\;h^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\
\;g^{2}=\left(x_{0}-v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}
\end{array}
\right.
\]
substituting the first equation on the second in the system
\[
\begin{gather}
x_{0}^{2}-g^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2} \tag{V}
\end{gather}
\]
substituting the third equation of the system in the expression (V), we obtain the time interval needed
to reach the minimum distance
\[
\begin{gather}
x_{0}^{2}-\left[\left(x_{0}-v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\right]=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt]
x_{0}^{2}-\left(x_{0}-v_{x}t\right)^{2}-\left(v_{y}t\right)^{2}=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt]
x_{0}^{2}-\left[x_{0}^{2}-2x_{0}v_{x}t+\left(v_{x}t\right)^{2}\right]=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt]
x_{0}^{2}-x_{0}^{2}+2x_{0}v_{x}t-\left(v_{x}t\right)^{2}=\left(v_{x}t\right)^{2}+2\left(v_{y}t\right)^{2}\\[5pt]
2x_{0}v_{x}t=\left(v_{x}t\right)^{2}+\left(v_{x}t\right)^{2}+2\left(v_{y}t\right)^{2}\\[5pt]
2x_{0}v_{x}t=2\left(v_{x}t\right)^{2}+2\left(v_{y}t\right)^{2}\\[5pt]
x_{0}v_{x}t=\left(v_{x}t\right)^{2}+\left(v_{y}t\right)^{2}\\[5pt]
v_{x}^{2}t^{2}+v_{y}^{2}t^{2}=x_{0}v_{x}t\\[5pt]
t^{2}\left(v_{x}^{2}+v_{y}^{2}\right)=x_{0}v_{x}t\\[5pt]
t\left(v_{x}^{2}+v_{y}^{2}\right)=x_{0}v_{x}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{t=\frac{x_{0}v_{x}}{v_{x}^{2}+v_{y}^{2}}}
\]
From expression (V), we get a minimum distance
\[
\begin{gather}
g^{2}=x_{0}^{2}-v_{x}^{2}t^{2}-v_{y}^{2}t^{2}\\
g^{2}=x_{0}^{2}-t^{2}\left(v_{x}^{2}+v_{y}^{2}\right)
\end{gather}
\]
substituting the time value found above
\[
\begin{gather}
g^{2}=x_{0}^{2}-\left(\frac{x_{0}v_{x}}{v_{x}^{2}+v_{y}^{2}}\right)^{2}\left(v_{x}^{2}+v_{y}^{2}\right)\\[5pt]
g^{2}=x_{0}^{2}-\frac{x_{0}^{2}v_{x}^{2}}{\left(v_{x}^{2}+v_{y}^{2}\right)^{2}}\left(v_{x}^{2}+v_{y}^{2}\right)\\[5pt]
g^{2}=x_{0}^{2}-\frac{x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt]
g^{2}=\frac{x_{0}^{2}\left(v_{x}^{2}+v_{y}^{2}\right)-x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt]
g^{2}=\frac{x_{0}^{2}v_{x}^{2}+x_{0}^{2}v_{y}^{2}-x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt]
g^{2}=\frac{x_{0}^{2}v_{x}^{2}+x_{0}^{2}v_{y}^{2}-x_{0}^{2}v_{x}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt]
g^{2}=\frac{x_{0}^{2}v_{y}^{2}}{v_{x}^{2}+v_{y}^{2}}\\[5pt]
g=\sqrt{\frac{x_{0}^{2}v_{y}^{2}}{v_{x}^{2}+v_{y}^{2}}\;}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{g=\frac{x_{0}v_{y}}{\sqrt{v_{x}^{2}+v_{y}^{2}}\;}}
\]