Solved Problem on Kinematics
advertisement   



Two particles run perpendicular to each other trajectories that intersect at a common origin. The particles leave at the same time from points x0 and y0 toward the origin, both with the same constant acceleration in magnitude. Calculate:
a) After how long after they leave they will be at the smallest distance; b) What is the smallest distance.


Problem data:
  • Initial position of the particle 1:    x0;
  • Initial speed of the particle 1:    v0x = 0;
  • Acceleration of the particle 1:    −a;
  • Initial position of the particle 2:    y0;
  • Initial speed of the particle 2:    v0y = 0;
  • Acceleration of the particle 2:    −a;
Problem diagram:

Let's assume the starting points of the bodies are positive (x0 > 0 and y0 > 0). As they move toward the origin their accelerations are in the opposite direction of the orientation of the trajectories and are negative (a < 0).
At a certain moment, they occupy points x and y such that the distance d between them are the smallest (Figure 1).
Figure 1

Solution

a) The equation of displacement as a function of time with constant acceleration is given by
\[ \bbox[#99CCFF,10px] {x(t)=x_{0}+v_{0}(t-t_{0})+\frac{a}{2}(t-t_{0})^{2}} \]
writing the equations for the two particles at t0 = 0
\[ \begin{gather} x=x_{0}+v_{0x}t-\frac{a}{2}t^{2}\\ x=x_{0}+0.t-\frac{a}{2}t^{2}\\ x=x_{0}-\frac{a}{2}t^{2} \tag{I} \end{gather} \]
\[ \begin{gather} y=y_{0}+v_{0y}t-\frac{a}{2}t^{2}\\ y=y_{0}+0.t-\frac{a}{2}t^{2}\\ y=y_{0}-\frac{a}{2}t^{2} \tag{II} \end{gather} \]
From Figure 1, we calculate the distance between the particles using the Pythagorean Theorem
\[ \begin{gather} s^{2}=x^{2}+y^{2} \tag{III} \end{gather} \]
substituting the expressions (I) and (II) into expression (III)
\[ \begin{gather} s=\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right]^{\;\frac{1}{2}} \tag{IV} \end{gather} \]
To find the instant when the distance is the smallest, we take the derivative of expression (IV) with respect to time and equal to zero.

Differentiation of    \( \displaystyle s=\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right]^{\;\frac{1}{2}} \)
\[ \displaystyle s=\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right]^{\;\frac{1}{2}} \]


The function s(t) is a composite function whose derivative is given by the chain rule
\[ \begin{gather} \frac{ds[g(t)]}{dt}=\frac{ds}{dg}\;\frac{dg}{dt} \tag{V} \end{gather} \]
with   \( s(g)=g^{\frac{\;1}{2}} \)   and   \( g(t)=\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2} \text{,} \)
\[ g(t)=\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2} \]
the differentiation will be
\[ \begin{align} &\frac{ds}{dg}=\frac{1}{2}g^{\frac{1}{2}-1}=\frac{1}{2}g^{\frac{1-2}{2}}=\frac{1}{2}g^{-{\frac{1}{2}}}=\frac{1}{2}\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}} \tag{VI}\\[10pt] &\frac{dg}{dt}=\frac{d}{dt}\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right] \tag{VII} \end{align} \]
substituting the expressions (VI) and (VII) into expression (V)
\[ \begin{gather} \frac{ds[g(t)]}{dt}=\frac{1}{2}\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}\;\frac{d}{dt}\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right] \tag{VIII} \end{gather} \]
the derivative of a sum is the sum of the derivatives
\[ \begin{gather} \frac{dg}{dt}=\frac{d}{dt}\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\frac{d}{dt}\left(y_{0}-\frac{a}{2}t^{2}\right)^{2} \tag{IX} \end{gather} \]
substituting the expression (IX) into expression (VIII)
\[ \begin{gather} \frac{ds[g(t)]}{dt}=\frac{1}{2}\left[\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}\;\left[\frac{d}{dt}\left(x_{0}-\frac{a}{2}t^{2}\right)^{2}+\frac{d}{dt}\left(y_{0}-\frac{a}{2}t^{2}\right)^{2}\right] \tag{X} \end{gather} \]
each of the functions in the parentheses is a composite function, whose derivative is given by the chain rule
\[ \begin{gather} \frac{dh[u(t)]}{dt}=\frac{dh}{du}\;\frac{du}{dt} \tag{XI} \end{gather} \]
applying the expression (XI) to the term   \( \displaystyle \left(x_{0}-\frac{a}{2}t^{2}\right)^{2} \)   of the expression (X), with   \( h(u)=u^{2} \)   and   \( \displaystyle u(t)=\left(x_{0}-\frac{a}{2}t^{2}\right) \),   thus derivatives are
\[ \begin{gather} \frac{dh}{du}=2u^{2-1}=2u \tag{XII} \end{gather} \]
\[ \begin{gather} \frac{du}{dt}=\left(0-2\frac{a}{2}t^{2-1}\right)=-at \tag{XIII} \end{gather} \]
substituting the expressions (XII) and (XIII) into expression (XI)
\[ \begin{gather} \frac{du[h(t)]}{dt}=-2\left(x_{0}-\frac{a}{2}t^{2}\right)at \tag{XIV} \end{gather} \]
again using the chain rule
\[ \begin{gather} \frac{df[v(t)]}{dt}=\frac{df}{dv}\;\frac{dv}{dt} \tag{XV} \end{gather} \]
applying the expression (XV) to the term   \( \displaystyle \left(y_{0}-\frac{a}{2}t^{2}\right)^{2} \)   of the expression (X), with \( f(v)=v^{2} \)   and   \( \displaystyle v(t)=\left(y_{0}-\frac{a}{2}t^{2}\right) \),   thus derivatives are
\[ \begin{align} &\frac{df}{dv}=2v^{2-1}=2v \tag{XVI} \\[10pt] &\frac{dv}{dt}=\left(0-2\frac{a}{2}t^{2-1}\right)=-at \tag{XVII} \end{align} \]
substituting the expressions (XVI) and (XVII) into expression (XV)
\[ \begin{gather} \frac{df[v(t)]}{dt}=-2\left(y_{0}-\frac{a}{2}t^{2}\right)at \tag{XVIII} \end{gather} \]
substituting expressions (XIV) and (XVIII) into expression (X)
\[ \begin{gather} \frac{ds}{dt}=\frac{1}{2}\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}\;\left[-2\left(x_{0}-\dfrac{a}{2}t^{2}\right)at-2\left(y_{0}-\dfrac{a}{2}t^{2}\right)at\right]\\[5pt] \frac{ds}{dt}=\frac{1}{\cancel{2}}\frac{(-\cancel{2}at)\;\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)+\left(y_{0}-\dfrac{a}{2}t^{2}\right)\right]}{\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}}\\[5pt] \frac{ds}{dt}=-{\frac{at\;\left[x_{0}-\dfrac{a}{2}t^{2}+y_{0}-\dfrac{a}{2}t^{2}\right]}{\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}}}\\[5pt] \frac{ds}{dt}=-{\frac{at\;\left[x_{0}+y_{0}-at^{2}\right]}{\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}}} \tag{XIX} \end{gather} \]

the derivative must be zero \( \left(\frac{ds}{dt}=0\right) \), we have in the expression (V)
\[ \begin{gather} -{\frac{at\;\left[x_{0}+y_{0}-at^{2}\right]}{\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}}}=0\\[5pt] x_{0}+y_{0}-at^{2}=-{\frac{0}{at}.\left[\left(x_{0}-\dfrac{a}{2}t^{2}\right)^{2}+\left(y_{0}-\dfrac{a}{2}t^{2}\right)^{2}\right]^{-{\frac{1}{2}}}}\\[5pt] x_{0}+y_{0}-at^{2}=0\\at^{2}=x_{0}+y_{0}\\[5pt] t^{2}=\frac{x_{0}+y_{0}}{a} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {t=\sqrt{\frac{x_{0}+y_{0}}{a}\;}} \]

b) The smallest distance is obtained by substituting the value of the time found in item (a) into the expression (IV)
\[ \begin{gather} s=\left[\left(x_{0}-\frac{a}{2}\left(\sqrt{\frac{x_{0}+y_{0}}{a}\;}\right)^{2}\right)^{2}+\left(y_{0}-\frac{a}{2}\left(\sqrt{\frac{x_{0}+y_{0}}{a}\;}\right)^{2}\right)^{2}\right]^{\;\frac{1}{2}}\\ s=\left[\left(x_{0}-\frac{a}{2}\left(\frac{x_{0}+y_{0}}{a}\right)\right)^{2}+\left(y_{0}-\frac{a}{2}\left(\frac{x_{0}+y_{0}}{a}\right)^{2}\right)^{2}\right]^{\;\frac{1}{2}}\\ s=\left[\left(x_{0}-\frac{x_{0}}{2}-\frac{y_{0}}{2}\right)^{2}+\left(y_{0}-\frac{x_{0}}{2}-\frac{y_{0}}{2}\right)^{2}\right]^{\;\frac{1}{2}}\\ s=\left[\left(\frac{x_{0}}{2}-\frac{y_{0}}{2}\right)^{2}+\left(\frac{y_{0}}{2}-\frac{x_{0}}{2}\right)^{2}\right]^{\;\frac{1}{2}}\\ s=\left[\frac{1}{4}\left(x_{0}-y_{0}\right)^{2}+\frac{1}{4}\left(y_{0}-x_{0}\right)^{2}\right]^{\;\frac{1}{2}}\\ s=\frac{1}{2}\left[x_{0}^{2}-2x_{0}y_{0}+y_{0}^{2}+y_{0}^{2}-2y_{0}x_{0}+x_{0}^{2}\right]^{\;\frac{1}{2}}\\ s=\frac{1}{2}\left[2x_{0}^{2}-4x_{0}y_{0}+2y_{0}^{2}\right]^{\;\frac{1}{2}}\\ s=\frac{\sqrt{2}}{2}\left[x_{0}^{2}-2x_{0}y_{0}+y_{0}^{2}\right]^{\;\frac{1}{2}}\\ s=\frac{\sqrt{2}}{2}\left[\left(x_{0}-y_{0}\right)^{2}\right]^{\;\frac{1}{2}} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {s=\frac{\sqrt{2}}{2}\left(x_{0}-y_{0}\right)} \]
advertisement