Solved Problem on Kinematics
advertisement   



A body moves with acceleration given by
\[ a=\alpha -\beta v \]
α and β are real positive constants that make the expression dimensionally consistent. Determine the expressions for the velocity and displacement as a function of time.


Solution

The instantaneous acceleration is given by
\[ \bbox[#99CCFF,10px] {a=\frac{dv}{dt}} \]
substituting this value in the given expression
\[ \frac{dv}{dt}=\alpha -\beta v \]
separating the variables and integrating both sides
\[ \int \frac{dv}{\alpha -\beta v}=\int dt \]
The limits of integration are v0, initial speed, and v(t), a speed at an instant t for dv, and 0, initial time, and t, for dt
\[ \int_{v_{0}}^{v(t)}\frac{dv}{\alpha -\beta v}=\int_{0}^{t}dt \]
Integration of    \(\displaystyle \int_{v_{0}}^{{v(t)}}\frac{dv}{\alpha -\beta v} \)

Changing the variable
\[ \begin{array}{l} u=\alpha -\beta v\\[10pt] \dfrac{du}{dv}=-\beta v\Rightarrow dv=-{\dfrac{1}{\beta }}du \end{array} \]
changing the limits of integration

for v = v0, we have \( u=\alpha -\beta v_{0} \)

for v = v(t), we have \( u=\alpha -\beta v(t) \)

substituting in the integral
\[ \begin{align} \int_{{\alpha -\beta v_{0}}}^{{\alpha -\beta v(t)}}\frac{1}{u}\left(-{\frac{1}{\beta}}\;du\right)&=-{\frac{1}{\beta }}\int _{{\alpha -\beta v_{0}}}^{{\alpha -\beta v(t)}}\frac{du}{u}=-{\frac{1}{\beta}}\;\left.\ln u\;\right|_{\;\alpha -\beta v_{0}}^{\;\alpha -\beta v(t)}=\\[5pt] &=-\frac{1}{\beta}\;\left[\ln (\alpha -\beta v(t))-\ln (\alpha -\beta v_{0})\right]=\\[5pt] &=-{\frac{1}{\beta }}\;\ln \left(\frac{\alpha -\beta v(t)}{\alpha -\beta v_{0}}\right) \end{align} \]

Integration of    \( \displaystyle \int_{0}^{t}dt \)
\[ \int_{0}^{t}dt=\left.t\;\right|_{\;0}^{\;t}=(t-0)=t \]
\[ \begin{gather} -{\frac{1}{\beta }}\;\ln \left(\frac{\alpha -\beta v(t)}{\alpha -\beta v_{0}}\right)=t\\[5pt] \ln \left(\frac{\alpha -\beta v(t)}{\alpha -\beta v_{0}}\right)=-\beta t\\[5pt] \frac{\alpha -\beta v(t)}{\alpha -\beta v_{0}}=\operatorname{e}^{-\beta t}\\[5pt] \alpha -\beta v(t)=\operatorname{e}^{-\beta t}(\alpha -\beta v_{0})\\[5pt] \beta v(t)=\alpha -\operatorname{e}^{-\beta t}(\alpha -\beta v_{0}) \end{gather} \]
\[ \bbox[#FFCCCC,10px] {v(t)=\frac{\alpha }{\beta}-\frac{\operatorname{e}^{-\beta t}}{\beta}(\alpha -\beta v_{0})} \]
The instantaneous speed is given by
\[ \bbox[#99CCFF,10px] {v=\frac{dx}{dt}} \]
substituting in the speed expression above
\[ \frac{dx}{dt}=\frac{\alpha }{\beta}-\frac{\operatorname{e}^{-\beta t}}{\beta}(\alpha -\beta v_{0}) \]
we integrate this expression in dt on both sides
\[ \begin{gather} \int \frac{dx}{dt}dt=\int \left[\frac{\alpha }{\beta}-\frac{\operatorname{e}^{-\beta t}}{\beta}(\alpha -\beta v_{0})\right] dt\\ \int \frac{dx}{dt}dt=\int\left[\frac{\alpha }{\beta}-\frac{\alpha -\beta v_{0}}{\beta}\operatorname{e}^{-\beta t}\right]dt \end{gather} \]
in the integral on the left-hand side \( \dfrac{dx}{dt}dt=dx \), and on the right-hand side of the equation the integral of the difference is the difference of the integral
\[ \int dx=\int \frac{\alpha }{\beta}\;dt-\int\frac{\alpha -\beta v_{0}}{\beta}\operatorname{e}^{-\beta t}dt \]
as \( \dfrac{\alpha }{\beta} \) and \( \dfrac{\alpha -\beta v_{0}}{\beta} \) are constants, they are carried outside of the integral sign.
The limits of integration are x0, initial position, and x(t), a position at an instant t for dx, and 0, initial time, and t, for dt
\[ \int_{x_{0}}^{{x(t)}}dx=\frac{\alpha }{\beta}\int_{0}^{{t}}dt-\frac{\alpha -\beta v_{0}}{\beta}\int_{0}^{{t}}\operatorname{e}^{-\beta t}dt \]
Integration of    \( \displaystyle \int_{x_{0}}^{x(t)}dx \)
\[ \int_{{x_{0}}}^{{x(t)}}dx=\left.x\;\right|_{\;x_{0}}^{\;x(t)}=x(t)-x_{0} \]

The integral in dt has already been calculated above.

Integration of    \( \displaystyle \int_{0}^{t}\operatorname{e}^{-\beta t}dt \)

Changing the variable
\[ \begin{array}{l} u=-\beta t\\[10pt] \dfrac{du}{dt}=-\beta \Rightarrow dt=-{\dfrac{1}{\beta}}du \end{array} \]
changing the limits of integration

for t = 0, we have \( u=0 \)

for t = t, we have \( u=-\beta t \)

substituting in the integral
\[ \begin{align} \int_{0}^{{-\beta t}}\operatorname{e}^{u}\left(-{\frac{1}{\beta}}\right)du&=-{\frac{1}{\beta}}\int_{0}^{{\beta t}}\operatorname{e}^{u}du=-{\frac{1}{\beta}}\;\left.\operatorname{e}^{u}\;\right|_{\;0}^{\;-\beta t}=\\[5pt] &=-{\frac{1}{\beta}}\left(\operatorname{e}^{-\beta t}-\operatorname{e}^{0}\right)=-{\frac{1}{\beta}}\left(\operatorname{e}^{-\beta t}-1\right) \end{align} \]
\[ x(t)-x_{0}=\frac{\alpha }{\beta}t-\frac{\alpha -\beta v_{0}}{\beta}\left[-{\frac{1}{\beta}}\left(\operatorname{e}^{-\beta t}-1\right)\right] \]
\[ \bbox[#FFCCCC,10px] {x(t)=x_{0}+\frac{\alpha }{\beta}t+\frac{\alpha -\beta v_{0}}{\beta^{2}}\left(\operatorname{e}^{-\beta t}-1\right)} \]
advertisement