A small block of mass m1 is placed over another larger block of mass
m2, and this, on a horizontal plane. Block 1 is drawn with a force that makes an angle
θ with the vertical, and bock 2 is drawn horizontally, the static friction coefficient between the
blocks, and between the block and the plane is equal to μ. Determine the minimum values of the forces
with which the blocks must be pulled so that the movement begins.
Problem data:
- Mass of body 1: m1;
- Mass of body 2: m2;
- Angle of force 1: θ;
- Coefficient of friction between blocks: μ;
- Coefficient of friction between the block and the plane: μ.
Problem diagram:
Drawing free-bodies diagrams we have the forces in each block.
Block 1:
- F1: force with which block 1 is drawn;
- Fat1: friction force between block 1 and block 2 due to force 1;
- P1: gravitational force on the block 1;
- N1: normal reaction force due to block 2.
Block 2:
- F2: force with which Block 2 is drawn;
- Fat2: friction force between block 2 and plane;
- Fat1: friction force between block 2 and block 1;
- Fg2: gravitational force on the block 2;
- N1: normal reaction due to block 1,
- N2: normal reaction force with the plane.
Solution
As the blocks are initially at rest we have the condition that the sum of the forces that act on them is
equal to zero
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum {\mathbf{F}}=0} \tag{I}
\end{gather}
\]
applying this condition to block 1 (Figure 1-B)
\[
{\mathbf{F}}_{1}+{\mathbf{F}}_{at 1}+{\mathbf{N}}_{1}+{\mathbf{F}}_{g1}=0
\]
where
\( {\mathbf{F}}_{1}=F_{1}\sin \theta\;\mathbf{i}+F_{1}\cos \theta\;\mathbf{j} \qquad\text{(II)} \)
\( {\mathbf{F}}_{at 1}=-\mu N_{1}\;\mathbf{i} \)
\( {\mathbf{N}}_{1}=N_{1}\;\mathbf{j} \)
\( {\mathbf{f}}_{1}=-m_{g1}g\;\mathbf{j} \)
assim
\[
F_{1}\sin \theta \;\mathbf{i}+F_{1}\cos\theta \;\mathbf{j}-\mu N_{1}\;\mathbf{i}+N_{1}\;\mathbf{j}-m_{1}g\;\mathbf{j}=0 \tag{III}
\]
Separating the components from the equation (III)
\[
\begin{gather}
\left\{
\begin{array}{l}
F_{1}\sin \theta -\mu N_{1}=0\\
F_{1}\cos \theta+N_{1}-m_{1}g=0
\end{array}
\right. \tag{IV}
\end{gather}
\]
solving the second equation for
N1 in the second equation of system (IV) and substituting
it into the first equation
\[
\begin{gather}
N_{1}=m_{1}g-F_{1}\cos \theta\\[10pt]
F_{1}\sin \theta =\mu \left(m_{1}g-F_{1}\cos \theta\right)\\
F_{1}\sin \theta =\mu m_{1}g-\mu F_{1}\cos \theta\\
F_{1}\sin \theta +\mu F_{1}\cos \theta =\mu m_{1}g\\
F_{1}\left(\sin \theta +\mu \cos \theta\right)=\mu m_{1}g\\
F_{1}=\frac{\mu m_{1}g}{\sin \theta+\mu \cos \theta }
\end{gather}
\]
Substituting this value in expression (II)) for vector
F1, so the movement begins the
applied force should be higher than
\[ \bbox[#FFCCCC,10px]
{{\mathbf{F}}_{1}=\frac{\mu m_{1}g}{\sin \theta +\mu \cos \theta}\left(\sin \theta \;\mathbf{i}+\cos \theta\;\mathbf{j}\right)}
\]
Substituting
F1 in the second equation of system (IV), we find the normal reaction
N1
\[
\begin{gather}
\frac{\mu m_{1}g}{\sin \theta +\mu \cos\theta }\cos \theta +N_{1}-m_{1}g=0\\[5pt]
N_{1}=m_{1}g-\frac{\mu m_{1}g\cos\theta }{\sin \theta +\mu \cos \theta}\\[5pt]
N_{1}=m_{1}g-\frac{\mu m_{1}g\cos \theta }{\sin \theta\left(1+\mu \dfrac{\cos \theta}{\sin \theta}\right)}\\[5pt]
N_{1}=m_{1}g-\frac{\mu m_{1}g\cot \theta}{1+\mu \cot \theta} \tag{V}
\end{gather}
\]
Applying the condition (I) to block 2 (Figure 2-B)
\[
{\mathbf{F}}_{2}+{\mathbf{F}}_{at 2}+{\mathbf{N}}_{2}+{\mathbf{F}}_{g2}+{\mathbf{N}}_{1}+{\mathbf{F}}_{at 1}=0
\]
where
\( {\mathbf{F}}_{2}=-F_{2}\;\mathbf{i} \qquad\text{(VI)} \)
\( {\mathbf{F}}_{at 2}=\mu N_{2}\;\mathbf{i} \)
\( {\mathbf{N}}_{1}=-N_{1}\;\mathbf{j} \)
\( {\mathbf{N}}_{2}=N_{2}\;\mathbf{j} \)
\( {\mathbf{F}}_{g2}=-m_{2}g\;\mathbf{j} \)
\( {\mathbf{F}}_{at 1}=\mu N_{1}\;\mathbf{i} \)
so
\[
-F_{2}\;\mathbf{i}+\mu N_{2}\;\mathbf{i}-N_{1}\;\mathbf{j}+N_{2}\;\mathbf{j}-m_{2}g\;\mathbf{j}+\mu N_{1}\;\mathbf{i}=0 \tag{VII}
\]
Separating the components from the equation (VII)
\[
\begin{gather}
\left\{
\begin{array}{l}
-F_{2}+\mu N_{2}+\mu N_{1}=0\\
-N_{1}+N_{2}-m_{2}g=0
\end{array}
\right. \tag{VIII}
\end{gather}
\]
solving the second equation for
N2 in the system (VIII) and substituting it into the
first equation
\[
\begin{gather}
N_{2}=N_{1}+m_{2}g\\[10pt]
-F_{2}+\mu\left(N_{1}+m_{2}g\right)+\mu N_{1}=0\\
F_{2}=\mu N_{1}+\mu m_{2}g+\mu N_{1}\\
F_{2}=2\mu N_{1}+\mu m_{2}g \tag{IX}
\end{gather}
\]
substituting the expression (V) into expression (IX)
\[
\begin{gather}
F_{2}=\mu \left[m_{2}g+2\left(m_{1}g-\frac{\mu m_{1}g\cot \theta }{1+\mu \cot \theta}\right)\right]\\[5pt]
F_{2}=\mu \left[m_{2}g+2m_{1}g-2\frac{\mu m_{1}g\cot \theta }{1+\mu \cot \theta}\right]
\end{gather}
\]
Substituting this value in the expression (VI) for the vector
F2, so that the movement
begins the applied force should be higher than
\[ \bbox[#FFCCCC,10px]
{{\mathbf{F}}_{2}=-\mu\left[\left(m_{2}+2m_{1}\right)g-2\frac{\mu m_{1}g\cot \theta }{1+\mu \cot \theta}\right]\;\mathbf{i}}
\]
Note: See that in particular, if
\( \theta=\frac{\pi}{2} \)
solutions for
F1 and
F2 forces are reduced to
\[
\begin{gather}
\mathbf{F}_{1}=\frac{\mu m_{1}g}{\cancelto{1}{\sin \frac{\pi}{2}} +\mu \cancelto{0}{\cos \frac{\pi}{2}}}\left(\cancelto{1}{\sin \frac{\pi}{2}} \;\mathbf{i}+\cancelto{0}{\cos \frac{\pi}{2}}\;\mathbf{j}\right)\\[5pt]
\mathbf{F}_{1}=\mu m_{1}g \;\mathbf{i}
\end{gather}
\]
that is the force of friction, then the force
F1 should be greater than this for the
movement to start.
\[
\begin{gather}
\mathbf{F}_{2}=-\mu\left[\left(m_{2}+2m_{1}\right)g-2\frac{\mu m_{1}g \frac{\cancelto{0}{\cos \theta}}{\cancelto{1}{\sin \theta}} }{1+\mu \frac{\cancelto{0}{\cos \theta}}{\cancelto{1}{\sin \theta}}}\right]\;\mathbf{i}\\[5pt]
\mathbf{F}_{2}=-\mu\left(m_{2}+2m_{1}\right)g\\[5pt]
\mathbf{F}_{2}=-\mu\left(m_{2}+m_{1}+m_{1}\right)g\\[5pt]
\mathbf{F}_{2}=-\mu\left(m_{2}+m_{1}\right)g+\mu m_{1}g
\end{gather}
\]
which is the force of friction of the whole system (
m1+
m2) on the
ground. The force of friction between the blocks (depends on
m1), then the force
F2 should be greater than this for the movement to begin.