Solved Problem on Dynamics
advertisement   



A small block of mass m1 is placed over another larger block of mass m2, and this, on a horizontal plane. Block 1 is drawn with a force that makes an angle θ with the vertical, and bock 2 is drawn horizontally, the static friction coefficient between the blocks, and between the block and the plane is equal to μ. Determine the minimum values ​​of the forces with which the blocks must be pulled so that the movement begins.


Problem data:
  • Mass of body 1:    m1;
  • Mass of body 2:    m2;
  • Angle of force 1:    θ;
  • Coefficient of friction between blocks:    μ;
  • Coefficient of friction between the block and the plane:    μ.
Problem diagram:

Drawing free-bodies diagrams we have the forces in each block.

Block 1:
  • F1: force with which block 1 is drawn;
  • Fat1: friction force between block 1 and block 2 due to force 1;
  • P1: gravitational force on the block 1;
  • N1: normal reaction force due to block 2.
Figure 1

Block 2:
  • F2: force with which Block 2 is drawn;
  • Fat2: friction force between block 2 and plane;
  • Fat1: friction force between block 2 and block 1;
  • Fg2: gravitational force on the block 2;
  • N1: normal reaction due to block 1,
  • N2: normal reaction force with the plane.
Figure 2

Solution

As the blocks are initially at rest we have the condition that the sum of the forces that act on them is equal to zero
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum {\mathbf{F}}=0} \tag{I} \end{gather} \]
applying this condition to block 1 (Figure 1-B)
\[ {\mathbf{F}}_{1}+{\mathbf{F}}_{at 1}+{\mathbf{N}}_{1}+{\mathbf{F}}_{g1}=0 \]
where

\( {\mathbf{F}}_{1}=F_{1}\sin \theta\;\mathbf{i}+F_{1}\cos \theta\;\mathbf{j} \qquad\text{(II)} \)
\( {\mathbf{F}}_{at 1}=-\mu N_{1}\;\mathbf{i} \)
\( {\mathbf{N}}_{1}=N_{1}\;\mathbf{j} \)
\( {\mathbf{f}}_{1}=-m_{g1}g\;\mathbf{j} \)

assim
\[ F_{1}\sin \theta \;\mathbf{i}+F_{1}\cos\theta \;\mathbf{j}-\mu N_{1}\;\mathbf{i}+N_{1}\;\mathbf{j}-m_{1}g\;\mathbf{j}=0 \tag{III} \]
Separating the components from the equation (III)
\[ \begin{gather} \left\{ \begin{array}{l} F_{1}\sin \theta -\mu N_{1}=0\\ F_{1}\cos \theta+N_{1}-m_{1}g=0 \end{array} \right. \tag{IV} \end{gather} \]
solving the second equation for N1 in the second equation of system (IV) and substituting it into the first equation
\[ \begin{gather} N_{1}=m_{1}g-F_{1}\cos \theta\\[10pt] F_{1}\sin \theta =\mu \left(m_{1}g-F_{1}\cos \theta\right)\\ F_{1}\sin \theta =\mu m_{1}g-\mu F_{1}\cos \theta\\ F_{1}\sin \theta +\mu F_{1}\cos \theta =\mu m_{1}g\\ F_{1}\left(\sin \theta +\mu \cos \theta\right)=\mu m_{1}g\\ F_{1}=\frac{\mu m_{1}g}{\sin \theta+\mu \cos \theta } \end{gather} \]
Substituting this value in expression (II)) for vector F1, so the movement begins the applied force should be higher than
\[ \bbox[#FFCCCC,10px] {{\mathbf{F}}_{1}=\frac{\mu m_{1}g}{\sin \theta +\mu \cos \theta}\left(\sin \theta \;\mathbf{i}+\cos \theta\;\mathbf{j}\right)} \]
Substituting F1 in the second equation of system (IV), we find the normal reaction N1
\[ \begin{gather} \frac{\mu m_{1}g}{\sin \theta +\mu \cos\theta }\cos \theta +N_{1}-m_{1}g=0\\[5pt] N_{1}=m_{1}g-\frac{\mu m_{1}g\cos\theta }{\sin \theta +\mu \cos \theta}\\[5pt] N_{1}=m_{1}g-\frac{\mu m_{1}g\cos \theta }{\sin \theta\left(1+\mu \dfrac{\cos \theta}{\sin \theta}\right)}\\[5pt] N_{1}=m_{1}g-\frac{\mu m_{1}g\cot \theta}{1+\mu \cot \theta} \tag{V} \end{gather} \]
Applying the condition (I) to block 2 (Figure 2-B)
\[ {\mathbf{F}}_{2}+{\mathbf{F}}_{at 2}+{\mathbf{N}}_{2}+{\mathbf{F}}_{g2}+{\mathbf{N}}_{1}+{\mathbf{F}}_{at 1}=0 \]
where

\( {\mathbf{F}}_{2}=-F_{2}\;\mathbf{i} \qquad\text{(VI)} \)
\( {\mathbf{F}}_{at 2}=\mu N_{2}\;\mathbf{i} \)
\( {\mathbf{N}}_{1}=-N_{1}\;\mathbf{j} \)
\( {\mathbf{N}}_{2}=N_{2}\;\mathbf{j} \)
\( {\mathbf{F}}_{g2}=-m_{2}g\;\mathbf{j} \)
\( {\mathbf{F}}_{at 1}=\mu N_{1}\;\mathbf{i} \)

so
\[ -F_{2}\;\mathbf{i}+\mu N_{2}\;\mathbf{i}-N_{1}\;\mathbf{j}+N_{2}\;\mathbf{j}-m_{2}g\;\mathbf{j}+\mu N_{1}\;\mathbf{i}=0 \tag{VII} \]
Separating the components from the equation (VII)
\[ \begin{gather} \left\{ \begin{array}{l} -F_{2}+\mu N_{2}+\mu N_{1}=0\\ -N_{1}+N_{2}-m_{2}g=0 \end{array} \right. \tag{VIII} \end{gather} \]
solving the second equation for N2 in the system (VIII) and substituting it into the first equation
\[ \begin{gather} N_{2}=N_{1}+m_{2}g\\[10pt] -F_{2}+\mu\left(N_{1}+m_{2}g\right)+\mu N_{1}=0\\ F_{2}=\mu N_{1}+\mu m_{2}g+\mu N_{1}\\ F_{2}=2\mu N_{1}+\mu m_{2}g \tag{IX} \end{gather} \]
substituting the expression (V) into expression (IX)
\[ \begin{gather} F_{2}=\mu \left[m_{2}g+2\left(m_{1}g-\frac{\mu m_{1}g\cot \theta }{1+\mu \cot \theta}\right)\right]\\[5pt] F_{2}=\mu \left[m_{2}g+2m_{1}g-2\frac{\mu m_{1}g\cot \theta }{1+\mu \cot \theta}\right] \end{gather} \]
Substituting this value in the expression (VI) for the vector F2, so that the movement begins the applied force should be higher than
\[ \bbox[#FFCCCC,10px] {{\mathbf{F}}_{2}=-\mu\left[\left(m_{2}+2m_{1}\right)g-2\frac{\mu m_{1}g\cot \theta }{1+\mu \cot \theta}\right]\;\mathbf{i}} \]


Note: See that in particular, if   \( \theta=\frac{\pi}{2} \)   solutions for F1 and F2 forces are reduced to
\[ \begin{gather} \mathbf{F}_{1}=\frac{\mu m_{1}g}{\cancelto{1}{\sin \frac{\pi}{2}} +\mu \cancelto{0}{\cos \frac{\pi}{2}}}\left(\cancelto{1}{\sin \frac{\pi}{2}} \;\mathbf{i}+\cancelto{0}{\cos \frac{\pi}{2}}\;\mathbf{j}\right)\\[5pt] \mathbf{F}_{1}=\mu m_{1}g \;\mathbf{i} \end{gather} \]
that is the force of friction, then the force F1 should be greater than this for the movement to start.
\[ \begin{gather} \mathbf{F}_{2}=-\mu\left[\left(m_{2}+2m_{1}\right)g-2\frac{\mu m_{1}g \frac{\cancelto{0}{\cos \theta}}{\cancelto{1}{\sin \theta}} }{1+\mu \frac{\cancelto{0}{\cos \theta}}{\cancelto{1}{\sin \theta}}}\right]\;\mathbf{i}\\[5pt] \mathbf{F}_{2}=-\mu\left(m_{2}+2m_{1}\right)g\\[5pt] \mathbf{F}_{2}=-\mu\left(m_{2}+m_{1}+m_{1}\right)g\\[5pt] \mathbf{F}_{2}=-\mu\left(m_{2}+m_{1}\right)g+\mu m_{1}g \end{gather} \]
which is the force of friction of the whole system (m1+m2) on the ground. The force of friction between the blocks (depends on m1), then the force F2 should be greater than this for the movement to begin.
advertisement